\(2x^2-2x+6=\sqrt{8x^3+27}\)
\(\sqrt{x^2-5x-6}=x-2\)
\(\sqrt{x^2-8x+16}=4-x\)
\(\sqrt{x^2-2x}=2-x\)
\(\sqrt{2x+27}-6=x\)
a: ĐKXĐ: \(x^2-5x-6>=0\)
=>(x-6)(x+1)>=0
=>\(\left[{}\begin{matrix}x>=6\\x< =-1\end{matrix}\right.\)
\(\sqrt{x^2-5x-6}=x-2\)
=>\(\left\{{}\begin{matrix}x-2>=0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=6\\-5x-6=-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\-x=10\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-8x+16}=4-x\)
=>\(\sqrt{\left(x-4\right)^2}=4-x\)
=>|x-4|=4-x
=>x-4<=0
=>x<=4
c: ĐKXĐ: \(x^2-2x>=0\)
=>x(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =0\end{matrix}\right.\)
\(\sqrt{x^2-2x}=2-x\)
=>\(\left\{{}\begin{matrix}x^2-2x=\left(2-x\right)^2\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=x^2-4x+4\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=4\\x< =2\end{matrix}\right.\Leftrightarrow x=2\left(nhận\right)\)
d: ĐKXĐ: x>=-27/2
\(\sqrt{2x+27}-6=x\)
=>\(\sqrt{2x+27}=x+6\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+6\right)^2=2x+27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+12x+36-2x-27=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+10x+9=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+9\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-6\\x\in\left\{-9;-1\right\}\end{matrix}\right.\)
=>x=-1
Kết hợp ĐKXĐ, ta được: x=-1
a.
\(\sqrt{x^2-5x-6}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=-10\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
\(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4-x\)
\(\Leftrightarrow\left|x-4\right|=-\left(x-4\right)\)
\(\Leftrightarrow x-4\le0\)
\(\Rightarrow x\le4\)
c.
\(\sqrt{x^2-2x}=2-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2-2x=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x^2-2x=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\2x=4\end{matrix}\right.\)
\(\Rightarrow x=2\)
d.
\(\Leftrightarrow\sqrt{2x+27}=x+6\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+6\ge0\\x+27=\left(x+6\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x+27=x^2+12x+36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x^2+11x+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{85}}{2}\\x=\dfrac{-11-\sqrt{85}}{2}\left(loại\right)\end{matrix}\right.\)
Giải phương trình:
\(2x^2-2x+6=\sqrt{8x^3+27}\)
\(2x^2-2x+6=\sqrt{8x^3+27}\)
\(\Leftrightarrow\left(2x^2-2x+6\right)^2=8x^3+27\)
\(\Leftrightarrow\left(2x^2-4x+3\right)^2=0\)
Dễ thấy \(2x^2-4x+3=2\left(x-1\right)^2+1>0\)
Nên PT vô nghiệm
3) tìm x biết
a) \(\sqrt{x+9}=7\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\)
lm nhanh giúp mk nhé mk đang cần gấp
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)
\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)
\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)
\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)
\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)
\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)
\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)
\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)
Giải phương trình:
\(3x^2-x+36=4\sqrt{6x^2-15x+27}+6\sqrt{2x^2+8x-6}\)
Giải phương trình: \(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(\Leftrightarrow3\left(\sqrt{8x^2+3}-2\sqrt{2x^2-2x+1}\right)-8x+1=0\)
\(\Leftrightarrow\frac{3\left(8x-1\right)}{\sqrt{8x^2+1}+2\sqrt{2x^2-2x+1}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left[\frac{3}{\sqrt{8x^2+3}+2\sqrt{2x^2-2x+1}}-1\right]=0\)
<=> 8x-1=0
<=> x=\(\frac{1}{8}\)
Giải phương trình: \(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)
\(pt\Leftrightarrow3\sqrt{8x^2+3}-3\sqrt{8x^2-8x+4}=8x-1\)
\(\Leftrightarrow3\cdot\frac{8x-1}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left(\frac{3}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{8}\\\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}=3\end{matrix}\right.\)
\(pt2\Leftrightarrow-8x-8+2\sqrt{8x^2+3}=0\)
\(\Leftrightarrow16x^2+16+32x=8x^2+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-8+\sqrt{38}}{4}\\x=\frac{-8-\sqrt{38}}{4}\end{matrix}\right.\)(loại vì ko tm đk)
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
Câu b còn 1 cách giải nữa:
Với \(x=0\) không phải nghiệm
Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)
Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)
Phương trình trở thành:
\(\sqrt{t^2+12}+t=6\)
\(\Leftrightarrow\sqrt{t^2+12}=6-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)
\(\Rightarrow t=2\)
\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)
\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)
\(\Rightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
\(\sqrt{x^2+6x+10}+\sqrt[3]{2x^2+12x+27}+\sqrt[4]{x^4-8x^2+82}\)