NH

\(\sqrt{x^2-5x-6}=x-2\)

\(\sqrt{x^2-8x+16}=4-x\)

\(\sqrt{x^2-2x}=2-x\)

\(\sqrt{2x+27}-6=x\)

NT
18 tháng 1 2024 lúc 21:17

a: ĐKXĐ: \(x^2-5x-6>=0\)

=>(x-6)(x+1)>=0

=>\(\left[{}\begin{matrix}x>=6\\x< =-1\end{matrix}\right.\)

\(\sqrt{x^2-5x-6}=x-2\)

=>\(\left\{{}\begin{matrix}x-2>=0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=6\\-5x-6=-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\-x=10\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-8x+16}=4-x\)

=>\(\sqrt{\left(x-4\right)^2}=4-x\)

=>|x-4|=4-x

=>x-4<=0

=>x<=4

c: ĐKXĐ: \(x^2-2x>=0\)

=>x(x-2)>=0

=>\(\left[{}\begin{matrix}x>=2\\x< =0\end{matrix}\right.\)

\(\sqrt{x^2-2x}=2-x\)

=>\(\left\{{}\begin{matrix}x^2-2x=\left(2-x\right)^2\\x< =2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-2x=x^2-4x+4\\x< =2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=4\\x< =2\end{matrix}\right.\Leftrightarrow x=2\left(nhận\right)\)

d: ĐKXĐ: x>=-27/2

\(\sqrt{2x+27}-6=x\)

=>\(\sqrt{2x+27}=x+6\)

=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+6\right)^2=2x+27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-6\\x^2+12x+36-2x-27=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-6\\x^2+10x+9=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+9\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-6\\x\in\left\{-9;-1\right\}\end{matrix}\right.\)

=>x=-1

Kết hợp ĐKXĐ, ta được: x=-1

Bình luận (0)
NL
18 tháng 1 2024 lúc 21:17

a.

\(\sqrt{x^2-5x-6}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=-10\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

b.

\(\sqrt{x^2-8x+16}=4-x\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4-x\)

\(\Leftrightarrow\left|x-4\right|=-\left(x-4\right)\)

\(\Leftrightarrow x-4\le0\)

\(\Rightarrow x\le4\)

Bình luận (0)
NL
18 tháng 1 2024 lúc 21:20

c.

\(\sqrt{x^2-2x}=2-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2-2x=\left(2-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x^2-2x=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\2x=4\end{matrix}\right.\)

\(\Rightarrow x=2\)

d.

\(\Leftrightarrow\sqrt{2x+27}=x+6\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+6\ge0\\x+27=\left(x+6\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x+27=x^2+12x+36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x^2+11x+9=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{85}}{2}\\x=\dfrac{-11-\sqrt{85}}{2}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
CA
Xem chi tiết
KQ
Xem chi tiết
YT
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
AT
Xem chi tiết
YI
Xem chi tiết