giải phương trình vô tỉ sau
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
a) \(\sqrt{3x-4}+\sqrt{4x+1}=-16x^2-8x+1\)
b) \(\sqrt{x}+2\sqrt{x+3}=7-\sqrt{x^2+3}\)
c) \(x^2-6x+26=6\sqrt{2x+1}\)
d)\(\sqrt{2006x^2-2005}+\sqrt{2005x^2-2004}=\sqrt{2006^2+2x-2003}+\sqrt{2005x^2+x-2002}\)
Giải phương trình :
\(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
Tìm x, biết:
a) \(\sqrt{x-2}=\sqrt{4-x}\)
b)\(\sqrt{x^2-8x+6}=x+2\)
c)\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
d)\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
e)\(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
\(\sqrt{8x-4}-12\sqrt{\dfrac{2x-1}{9}}+\sqrt{18x-9}=5\)
1) \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
2) \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
3) \(\sqrt{x^2-6x+9}=2x\)
4) \(\sqrt{4x^2+1}=2x-1\)
5) \(\sqrt{x^2-4x+4}=\sqrt{x^2-2x+1}\)
Giúp mình với, cảm ơn bạn!
Bài 1. Tìm Max:
a. \(\frac{1}{2x-\sqrt{x}+1}\)
b.\(\frac{1}{x-2\sqrt{x}+3}\)
c.\(\frac{1}{1+\sqrt{1-x^2}}\)
Bài 2. Tìm Min:
a.\(\frac{2}{6x-5-9x^2}\)
b.\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Rút gọn biểu thức sau với \(x\ge0\):
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)