NH
1, Cho left(O;dfrac{AB}{2}right), C là một điểm nằm trên nửa đường tròn. Qua D trên đoạn thẳng OA kẻ đường thẳng vuông góc với AB cắt BC tại F. Tiếp tuyến của nửa đường tròn tại C cắt DF tại I. Gọi E là là giao điểm của AC và DF. a. So sánh widehat{IEC} với widehat{ICE} và widehat{ABC} b. Chứng minh Delta EIC là tam giác cân c. Chứng minh IEICtext{IF}IEICtext{IF} 2. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I. a. dfrac{IB}{IC}dfrac{AB^2}{AC^2} b. Tính IA và I...
Đọc tiếp

Những câu hỏi liên quan
H24
Xem chi tiết
NT
30 tháng 11 2022 lúc 14:01

Bài 2:

\(\left\{{}\begin{matrix}a+1>=2\sqrt{a}\\b+1>=2\sqrt{b}\\c+1>=2\sqrt{c}\end{matrix}\right.\)

=>\(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

Bình luận (0)
MM
Xem chi tiết
MD
Xem chi tiết
VT
Xem chi tiết
XT
15 tháng 5 2017 lúc 20:50

1.

h(x)=x(x-1)+1=x2-x+1

Cho h(x)=0=>x2-x+1=0<=>\(\left(x^2-\dfrac{1}{2}x\right)-\left(\dfrac{1}{2}x-\dfrac{1}{4}\right)+\dfrac{3}{4}=0\)

<=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>PTVN

2.

(x-1).f(x)=(x+4).f(x+8)

*)Với x=1 ta có:

0.f(1)=5.f(9)

<=>5.f(9)=0

=>x=9 là 1 nghiệm của f(x)

*)với x=-4 ta có:

-5.f(-4)=0.f(4)

=>-5.f(-4)=0

=>x=-4 là 1 nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là x=-4 và x=9

Bình luận (0)
SK
Xem chi tiết
NH
24 tháng 5 2017 lúc 10:03

Phép dời hình và phép đồng dạng trong mặt phẳng

Bình luận (0)
H24
Xem chi tiết
NL
21 tháng 4 2015 lúc 14:59

chữ xấu thế em, anh không nhìn thấy

Bình luận (0)
VC
Xem chi tiết
LL
5 tháng 8 2017 lúc 16:50

Khai triển, BĐT cần chứng minh tương đương 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Áp dụng AM-GM:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}}\)

\(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{b^2}{ac}}=\frac{3b}{\sqrt[3]{abc}}\)

\(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3\sqrt[3]{\frac{c^2}{ab}}=\frac{3c}{\sqrt[3]{abc}}\)

Cộng theo vế: \(3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)

Còn chứng minh \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a+b+c}{\sqrt[3]{abc}}\) hoàn toàn tương tự.Ta thu được đpcm

Dấu = xảy ra khi a=b=c

Bình luận (0)
DH
Xem chi tiết
NK
Xem chi tiết
HU
Xem chi tiết
DH
13 tháng 12 2018 lúc 20:29

Ta có: \(\left(1-a\right)\left(1-b\right)=1-a-b+ab\)

-Vì \(a>0;b>0\) nên ab > 0

Suy ra: \(\left(1-a\right)\left(1-b\right)>1-a-b\) (*)

-Vì c < 1 nên 1-c > 0

Tương tự (*) => \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>1-a-b-c\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>\left(1-a-b-c\right)\left(1-d\right)\)

\(d< 1\Rightarrow d-1>0\)

Vậy \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>1-a-b-c-d\)

=> (đpcm)

                                                                         

Bình luận (0)
KS
14 tháng 12 2018 lúc 11:11

Đặt \(A=\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)

\(A=\left(1-a-b+ab\right)\left(1-c-d+cd\right)\)

\(A=1-c-d+cd-a+ac+ad-acd-b+bd-bcd+ab-abc-abd+abcd+bc\)

\(A=1-a-b-c-d+cd\left(1-a\right)+ac\left(1-b\right)+bc\left(1-d\right)+bd\left(1-c\right)+abcd\)

Có: 0<a,b,c,d<1

=> \(cd\left(1-a\right)>0;ac\left(1-b\right)>0;bc\left(1-d\right)>0;bd\left(1-c\right)>0;abcd>0\)

\(\Rightarrow A>A-cd\left(1-a\right)-ac\left(1-b\right)-bc\left(1-d\right)-bd\left(1-c\right)-abcd=1-a-b-c-d\)

                                                                                                                                        đpcm

Bình luận (0)