Cho hai đg thẳng d1 , d2 có pt:
d1 : 2x - 6y = 10
d2 : x + ky = 4 (k # 0)
a) Tính giá trị của k để d1// d2
b) Tìm giá trị của k để 2 đg thẲNG có điểm chung là A(-1;-2)
1.Phân tích
(a - x)^2 + (a/2)^2
2. Cho hai đg thẳng d1 và d2 có phương trình:
d1 : 2x -6y =10
d2: x + ky =4
a) Tính giá trị của k để d1 // d2
b) Tìm giá trị của k để hai đường thẳng có điểm chung là A( -1;-2)
Bài 2:
a: Để hai đường song song thì 2/1=-6/k<>10/4
=>-6/k=2
=>k=-3
b: Thay x=-1 và y=-2 vào (d2), ta được:
-1-2k=4
=>2k=-5
=>k=-5/2
Cho hai đường d1 và d2 có phương trình:
d1: 2x - 6y = 10
d2: x + ky=4 (k#0)
a) Tính giá trị của k để d1// d2
b) Tìm giá trị cuả k để hai đường thẳng cóa điểm chung là A(-1;-2)
a) d1//d2<=> \(\dfrac{2}{1}=-\dfrac{6}{k}\Leftrightarrow k=-3\)
b)thay tọa độ A(-1;-2) vào PT d1 ta được: -2+12=10 (đúng)0
vậy A(-1;-2) thuộc d1
=>hai đường thẳng có điểm chung A(-1;-2) <=>
A thuộc d2.
thay tọa độ A vào PT d2 ta được: -1-2k=4<=> k=-5/2
a) Để d1//d2 thì: \(\dfrac{2}{1}=\dfrac{-6}{k}\)
\(\Rightarrow k=-3\left(TM\right)\)
Vậy với k=-3 thì d1//d2.
b)Thay x=-1; y=-2 vào d1:
-2+12=10(LĐ). Vậy A thuộc d1.
Thay x=-1; y=-2 vào d2:
-1-2k=4\(\Rightarrow k=\dfrac{-5}{2}\left(TM\right)\)
Vậy với \(k=\dfrac{-5}{2}\) thì hai đường thẳng có điểm chung là A(1;-2).
1.cho hai đg d1 và d2 có pt
d1: 2x - 6y =10
d2: x + ky =4 (k#0)
a) Tính giá trị của k để d1//d2
b) Tìm giá trị của K để hai đg thẳng có điểm chung là A(-1;-2)
2.:Hai thị xã A và B cách nhau 90km.Một chiếc ô tô khởi hành từ A và một chiếc mô tô khởi hành từ B cùng một lúc và đi ngược chiều nhau.Sau khi gặp nhau , xe ô tô chạy thêm 30' nữa thì đến B, còn xe mô tô chạy thêm 2h ms đến A.Tìm vận tốc của mỗ xe.
Cho hai đường thẳng d1 2x - 3y +1 = 0 và d2 -4x + 6y -3 = 0
viết đường thẳng // với d1 và d2
Đường thẳng song song với d1 và d2 là:
(d3): 2x - 3y + c (với c khác 1 và c khác 1,5)
(d1):3x-y-4=0 (d2):2x+6y+6=0 .Viết pt đường thẳng (d3):(d2)là đường phân giác góc tạo bởi (d1)và (d3)
cho hai đường thẳng d1:y=-x+2 và d2:y=-x/3-1/2
a) vẽ trên cùng một mặt phẳng Oxy hai đường thẳng d1; d2
b) viết pt đường thẳng đi qua điểm N ∈ d2 có hoành độ Xn = 3/4 đồng thời song song với đường thẳng d1
b: \(y_N=-\dfrac{3}{4}:3-\dfrac{1}{2}=\dfrac{-1}{4}-\dfrac{1}{2}=-\dfrac{3}{8}\)
Vì (d)//(d1) nên a=-1
Vậy: (d): y=-x+b
Thay x=3/4 và y=-3/8 vào (d), ta được:
b-3/4=-3/8
hay b=3/8
trong mặt phẳng tọa độ Oxy,cho hai đường thẳng d1:2x-y+5=0,d2:3x+6y-1=0 và điểm P(-2,0).Gọi A là giao điểm của d1 và d2.Khi đó đường thẳng d đi qua P và cùng với d1,d2 tạo thành một tam giác cân đỉnh A có phương trình là?
Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)
\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)
\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:
\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn
cho 3 đường thẳng d1:y=2x-2, d2:y=-4/3x-2 và d3:y=1/3+3
a) vẽ các đg thẳng d1,d2,d3 trên cùng 1 mặt phẳng tọa độ
b) gọi giao điểm đg thẳng d3 với d1 và d2 theo thứ tự là A, B. Hãy tìm tọa độ của A, B
b, PT giao điểm (d3) và (d1) là \(\dfrac{1}{3}x+3=2x-2\Leftrightarrow\dfrac{5}{3}x=5\Leftrightarrow x=3\Leftrightarrow y=4\Leftrightarrow A\left(3;4\right)\)
PT giao điểm (d3) và (d2) là \(\dfrac{1}{3}x+3=-\dfrac{4}{3}x-2\Leftrightarrow\dfrac{5}{3}x=-5\Leftrightarrow x=-3\Leftrightarrow y=2\Leftrightarrow B\left(-3;2\right)\)
Trong mặt phẳng Oxy cho 2 đường thẳng d1: 2x - y + 5=0, d2: 3x + 6y - 7=0. Lập phương trình đường thẳng đi qua P (2; -1) sao cho đường thẳng đó cắt d1, d2 tạo ra một tam giác cân có đỉnh là giao điểm của d1, d2
d1 có 1 vtpt là \(\overrightarrow{n1}\)(2;-1);d2 có 1 vtpt là \(\overrightarrow{n2}\)(3;6)
Ta có \(\overrightarrow{n1}\)\(\times\)\(\overrightarrow{n2}\)=2\(\times\)3-1\(\times\)6=0 nên d1 vuông góc d2 và d1 cắt d2 tại I(I khác P)
Gọi d là đườg thẳng đi qua P;d:A(x-2)+B(y+1)=0\(\Leftrightarrow\)Ax+By-2A+B=0
d cắt d1;d2 tạo thành một tam giác cân có đỉnh I\(\Leftrightarrow\)d tạo với d1(hoặc d2) một góc 45
\(\Leftrightarrow\)\(\frac{\left|2A-B\right|}{\sqrt{A^2+B^2}\sqrt{2^2+\left(-1\right)^2}}\)=\(\cos45\)
\(\Leftrightarrow\)\(3A^2\)-8AB-\(3B^2\)=0
\(\Leftrightarrow\)A=3B hoặc B=-3A
Nếu A=3B ta có d:3x+y-5=0
Nếu B=-3A to có d:x-3y-5=0
Vậy......