Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

LT

Trong mặt phẳng Oxy cho 2 đường thẳng d1: 2x - y + 5=0, d2: 3x + 6y - 7=0. Lập phương trình đường thẳng đi qua P (2; -1) sao cho đường thẳng đó cắt d1, d2 tạo ra một tam giác cân có đỉnh là giao điểm của d1, d2

NH
13 tháng 2 2016 lúc 12:11

d1 có 1 vtpt là \(\overrightarrow{n1}\)(2;-1);d2 có 1 vtpt là \(\overrightarrow{n2}\)(3;6)

Ta có \(\overrightarrow{n1}\)\(\times\)\(\overrightarrow{n2}\)=2\(\times\)3-1\(\times\)6=0 nên d1 vuông góc d2 và d1 cắt d2 tại I(I khác P)

Gọi d là đườg thẳng đi qua P;d:A(x-2)+B(y+1)=0\(\Leftrightarrow\)Ax+By-2A+B=0

d cắt d1;d2 tạo thành một tam giác cân có đỉnh I\(\Leftrightarrow\)d tạo với d1(hoặc d2) một góc 45

\(\Leftrightarrow\)\(\frac{\left|2A-B\right|}{\sqrt{A^2+B^2}\sqrt{2^2+\left(-1\right)^2}}\)=\(\cos45\)

\(\Leftrightarrow\)\(3A^2\)-8AB-\(3B^2\)=0

\(\Leftrightarrow\)A=3B hoặc B=-3A

Nếu A=3B ta có d:3x+y-5=0

Nếu B=-3A to có d:x-3y-5=0

Vậy......

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
TL
Xem chi tiết
FA
Xem chi tiết
FA
Xem chi tiết
NN
Xem chi tiết
RB
Xem chi tiết
NV
Xem chi tiết
LN
Xem chi tiết