Những câu hỏi liên quan
PL
Xem chi tiết
TN
3 tháng 3 2021 lúc 23:36

\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)

\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)

=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)

C=-1 ta được phương án A(ko tm câu hỏi)

C=0 ta được phương án B(ko tm câu hỏi)

C=2 ta được phương án C(ko tm câu hỏi)

=>chọn D

Bình luận (0)
HV
Xem chi tiết
NT
19 tháng 12 2021 lúc 14:23

a: f(-1/2)=17/4

f(5)=29

Bình luận (0)
NM
19 tháng 12 2021 lúc 14:23

\(a,f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}+4=\dfrac{17}{4}\\ f\left(5\right)=25+4=29\\ b,f\left(x\right)=10=x^2+4\Leftrightarrow x^2=6\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
AH
15 tháng 3 2021 lúc 13:42

Lời giải:

\(\int f(x)dx=\int \frac{x^2+2x}{x+1}dx=\int \frac{(x+1)^2-1}{x+1}dx=\int (x+1-\frac{1}{x+1})dx\)

\(=\int (x+1)dx-\int \frac{1}{x+1}dx=\frac{x^2}{2}+x-\ln |x+1|+c\)

Bình luận (0)
H24
Xem chi tiết
NL
11 tháng 3 2022 lúc 21:16

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

Bình luận (0)
NL
11 tháng 3 2022 lúc 21:17

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

Bình luận (1)
TI
9 tháng 1 2024 lúc 22:41

Để tìm nguyên hàm của hàm số, ta cần xác định giá trị của hàm tại một điểm nào đó.

Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.

Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm số:

 

f ( x )

( 2 x − 1 ) e 1 x

= ( 2 ( 3 ) − 1 ) e 1 ( 3 )

= ( 6 − 1 ) e 1 3

= ( 5 ) e 1 3

 

f ( x )

e 3 x

= e 3 ( 3 )

= e 3 3

Ta tiến hành tính toán:

 

f ( 3 )

( 5 ) e 1 3

= 5 e 1 3

 

f ( 3 )

e 3 3

= e 3 3

Như vậy, giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Tóm lại, để tìm nguyên hàm của hàm số, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Bình luận (1)
H24
Xem chi tiết
NL
12 tháng 12 2020 lúc 20:38

Đề bài là: \(f\left(x\right)=\dfrac{x^3+1}{x+2}\) hay \(f\left(x\right)=x^3+\dfrac{1}{x}+2\) hay \(f\left(x\right)=x^3+\dfrac{1}{x+2}\) bạn?

Bạn nên sử dụng tính năng gõ công thức toán hoặc chụp hình trực tiếp đề bài gửi lên (hiện hoc24 đã cho gửi câu hỏi bằng hình ảnh)

Bình luận (1)
NL
12 tháng 12 2020 lúc 20:48

\(\int\dfrac{x^3+1}{x+2}dx=\int\left(x^2-2x+4-\dfrac{7}{x+2}\right)dx\)

\(=\dfrac{1}{3}x^3-x^2+4x-7ln\left|x+2\right|+C\)

Bình luận (1)
HN
Xem chi tiết
NL
Xem chi tiết
NT
22 tháng 2 2021 lúc 21:22

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

Bình luận (0)
NB
Xem chi tiết
HH
8 tháng 4 2021 lúc 14:07

1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)

2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)

3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)

4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)

\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)

5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)

Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học

Bình luận (1)
MN
Xem chi tiết
H24
26 tháng 8 2021 lúc 19:17

Sửa b)`->` x nguyên để f(x) nguyên

a)TXĐ:`{(x>=0),(sqrtx-1 ne 0):}`

`<=>{(x>=0),(sqrtx ne 1):}`

`=>x>=0,x ne 1`

`b)f(x) in ZZ=>sqrtx+1 vdots sqrtx-1`

`=>sqrtx-1+2 vdots sqrtx-1`

`=>2 vdots sqrtx-1`

`=>sqrtx-1 in Ư(2)`

`=>sqrtx-1 in {+-1;2}`

`=>sqrtx in {0;2;3}`

`=>x in {0;4;9}`

Bình luận (0)
NT
27 tháng 8 2021 lúc 0:33

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Để f(x) nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

Bình luận (0)
H24
Xem chi tiết
H9
18 tháng 11 2023 lúc 14:05

a) Ta có: 

\(f\left(-2\right)=\left|3\cdot-2-1\right|=\left|-6-1\right|=\left|-7\right|=7\) 

\(f\left(2\right)=\left|3\cdot2-1\right|=\left|6-1\right|=5\)

\(f\left(-\dfrac{1}{4}\right)=\left|3\cdot-\dfrac{1}{4}-1\right|=\left|-\dfrac{3}{4}-1\right|=\left|-\dfrac{7}{4}\right|=\dfrac{7}{4}\) 

b) Ta có: 

\(f\left(x\right)=10\)

\(\Rightarrow\left|3x-1\right|=10\)

Với \(x\ge\dfrac{1}{3}\Rightarrow3x-1=10\)

\(\Rightarrow3x=11\Rightarrow x=\dfrac{11}{3}\left(tm\right)\)

Với \(x< \dfrac{1}{3}\Rightarrow3x-1=-10\)

\(\Rightarrow3x=-9\Rightarrow x=-3\left(tm\right)\) 

_______

\(f\left(x\right)=-3\)

\(\Rightarrow\left|3x-1\right|=-3\)

Mà: \(\left|3x-1\right|\ge0\forall x\) và \(-3< 0\)

\(\Rightarrow\left|3x-1\right|=-3\) (vô lý)

\(\Rightarrow\) không có x thỏa mãn 

Bình luận (0)