Tìm 2 số h,k sao cho \(\overrightarrow{u}=h.\overrightarrow{a}+k.\overrightarrow{b}\) biết \(\overrightarrow{u}=\left(8;-6\right)\), \(\overrightarrow{a}=\left(2;4\right)\), \(\overrightarrow{b}=\left(3;-5\right)\)
Tìm 2 số h,k sao cho \(\overrightarrow{u}=h.\overrightarrow{a}+k.\overrightarrow{b}\) biết \(\overrightarrow{u}=\left(8;-6\right)\), \(\overrightarrow{a}=\left(2;4\right)\), \(\overrightarrow{b}=\left(3;-5\right)\)
\(h\overrightarrow{a}+k\overrightarrow{b}=\left(2h;4h\right)+\left(3k;-5k\right)=\left(2h+3k;4h-5k\right)\)
\(\overrightarrow{u}=h\overrightarrow{a}+k\overrightarrow{b}\Leftrightarrow\left\{{}\begin{matrix}2h+3k=8\\4h-5k=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}h=1\\k=2\end{matrix}\right.\)
Tính tích vô hướng của hai vectơ \(\overrightarrow{a},\overrightarrow{b}\) trong không gian với các tọa độ đã cho là :
a) \(\overrightarrow{a}=\left(3;0;-6\right);\overrightarrow{b}=\left(2;-4;c\right)\)
b) \(\overrightarrow{a}=\left(1;-5;2\right);\overrightarrow{b}=\left(4;3;-5\right)\)
c) \(\overrightarrow{a}=\left(0;\sqrt{2};\sqrt{3}\right);\overrightarrow{b}=\left(1;\sqrt{3};-\sqrt{2}\right)\)
a) \(\overrightarrow{a}.\overrightarrow{b}=6\left(1-c\right)\)
b) \(\overrightarrow{a}.\overrightarrow{b}=-21\)
c) \(\overrightarrow{a}.\overrightarrow{b}=0\)
Chứng minh rằng
a) \(\overrightarrow a = \left( {4; - 6} \right)\) và \(\overrightarrow b = \left( { - 2;3} \right)\) là hai vectơ ngược hướng
b) \(\overrightarrow a = \left( { - 2;3} \right)\) và \(\overrightarrow b = \left( { - 8;12} \right)\) là hai vectơ cùng hướng
c) \(\overrightarrow a = \left( {0;4} \right)\) và \(\overrightarrow b = \left( {0; - 4} \right)\) là hai vectơ đối nhau
a) Ta thấy \(4 = ( - 2).( - 2); - 6 = ( - 2).3 \Rightarrow \overrightarrow a = - 2\overrightarrow b \)
\( - 2 < 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng (đpcm)
b) Ta thấy \( - 8 = 4.( - 2);12 = 4.3 \Rightarrow \overrightarrow b = 4\overrightarrow a \)
\(4 > 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng (đpcm)
c) Ta thấy \(0 = - 1.0;4 = ( - 1).( - 4) \Rightarrow \overrightarrow a = - \overrightarrow b \)
Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đối nhau (đpcm)
cho \(\overrightarrow{u}=\left(3;-2\right),\overrightarrow{v}=\left(1;6\right).\)khẳng điịnh nào đúng ?
A.\(\overrightarrow{u}+\overrightarrow{v},\overrightarrow{a}=\left(-4;4\right)\)ngược hướng B.\(\overrightarrow{u},\overrightarrow{v}\)cùng phương
C. \(\overrightarrow{u}-\overrightarrow{v},\overrightarrow{b}=\left(6;-24\right)\)cùng hướng D. \(2\overrightarrow{u}+\overrightarrow{v},\overrightarrow{v}\)cùng phương
Cho 3 vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) tuỳ ý. Chứng minh:
\(\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\). Dấu "=" xảy ra khi nào? Nêu bài toán tổng quát
Lời giải:
Xét hai vecto bất kỳ \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$
Ta có:
\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)
\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)
Mà theo bđt tam giác thì:
\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)
Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$
$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng
$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng
Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.
------------------
Áp dụng vào bài toán:
\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)
Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng
\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng
Tính \(\overrightarrow{a}.\overrightarrow{b}\) hả bạn?
\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|cos\left(\overrightarrow{a};\overrightarrow{b}\right)=2.\sqrt{3}.cos30^0=3\)
Đặt \(A=\left|\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow A^2=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)\)
\(=2^2+3+2.2.\sqrt{3}.cos30^0=13\)
\(\Rightarrow\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt{13}\)
Cho các véctơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) thỏa mãn \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{c}\right|=z\) và \(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\) Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
Ta có:
\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}=-3\overrightarrow{c}\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=9\overrightarrow{c}^2\)
<=> \(\overrightarrow{a}^2+\overrightarrow{b}^2+2\overrightarrow{a}\overrightarrow{b}=9\overrightarrow{c}^2\)
<=> \(\overrightarrow{a}\overrightarrow{b}=\dfrac{9z^2-x^2-y^2}{2}\)
Tương tự ta có: \(\overrightarrow{b}+3\overrightarrow{c}=-\overrightarrow{a}\) <=> \(\left(\overrightarrow{b}+3\overrightarrow{c}\right)^2=\overrightarrow{a}^2\)
<=> \(\overrightarrow{b}.\overrightarrow{c}=\dfrac{x^2-y^2-9z^2}{2}\)
Và lại có : \(\overrightarrow{a}\overrightarrow{c}=\dfrac{y^2-x^2-9z^2}{2}\)
Suy ra: A=\(\dfrac{9z^2-x^2-y^2}{2}+\dfrac{x^2-y^2-9z^2}{2}+\dfrac{y^2-x^2-9z^2}{2}=\dfrac{3z^2-z^2-y^2}{2}\)
Cho \(E\left( {9;9} \right),F\left( {8; - 7} \right),G\left( {0; - 6} \right)\). Tìm tọa độ các vectơ \(\overrightarrow {FE} ,\overrightarrow {FG} ,\overrightarrow {EG} \)
Ta có
\(\begin{array}{l}\overrightarrow {FE} = ({x_E} - {x_F};{y_E} - {y_F}) = (9 - 8;9 - ( - 7)) = (1;16)\\\overrightarrow {FG} = ({x_G} - {x_F};{y_G} - {y_F}) = (0 - 8;( - 6) - ( - 7)) = ( - 8;1)\\\overrightarrow {EG} = ({x_G} - {x_E};{y_G} - {y_E}) = (0 - 9;( - 6) - 9) = ( - 9; - 15)\end{array}\)
cho \(\overrightarrow{a},\overrightarrow{b}\ne0\)
CMR : \(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|\le\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
giả sử tam giác ABC \(\overrightarrow{BC}\)=\(\overrightarrow{a}\) \(\overrightarrow{AC}\)= \(\overrightarrow{b}\) \(\overrightarrow{AB}\)=\(\overrightarrow{c}\)
theo đề ta có
BC-AC< AB < BC+AC
Trong mặt phẳng tọa độ Oxy, cho các vectơ \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j ,\)\(\overrightarrow b = \left( {4; - 1} \right)\) và các điểm M (-3; 6), N(3; -3).
a) Tìm mối liên hệ giữa các vectơ \(\overrightarrow {MN} \) và \(2\;\overrightarrow a - \overrightarrow b \).
b) Các điểm O, M, N có thẳng hàng hay không?
c) Tìm điểm P(x; y) để OMNP là một hình bình hành.
Tham khảo:
a) Ta có: \(\overrightarrow b = \left( {4; - 1} \right)\) và \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)
\( \Rightarrow 2\;\overrightarrow a - \overrightarrow b = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)
Lại có: M (-3; 6), N(3; -3)
\( \Rightarrow \overrightarrow {MN} = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)
Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN} = 3\left( {2\;\overrightarrow a - \overrightarrow b } \right)\)
b) Ta có: \(\overrightarrow {OM} = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON} = \left( {3; - 3} \right)\) (do N (3; -3)).
Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \).
Do \(\overrightarrow {OM} = \left( { - 3;6} \right),\;\overrightarrow {PN} = \left( {3 - x; - 3 - y} \right)\) nên
\(\overrightarrow {OM} = \overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 = - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 9\end{array} \right.\)
Vậy điểm cần tìm là P (6; -9).