Bài 1: Hệ tọa độ trong không gian

KC
Xem chi tiết
GM
Xem chi tiết
NT
5 tháng 12 2022 lúc 21:53

Chọn B

Bình luận (1)
TA
7 tháng 12 2022 lúc 14:28

Gọi $I$ là trung điểm $AB$, $I$ cố định.

\(\vec{MA}^2+\vec{MB^2}=\left(\vec{MI}+\vec{IA}\right)^2+\left(\vec{MI}+\vec{IB}\right)^2\)

\(=2.\vec{MI^2}+IA^2+IB^2+2\vec{MI}\left(\vec{IA}+\vec{IB}\right)\)

\(=2.\vec{MI^2}+IA^2+IB^2\)  (do $I$ là trung điểm $AB$)

Mặt khác, $IA^2$ và $IB^2$ không đổi, nên để $MA^2+MB^2$ nhỏ nhất, thì $MI^2$ nhỏ nhất. Điều này xảy ra khi và chỉ khi $MI$ vuông góc với $Ox$.

Đến đây, em tự suy nghĩ và làm nốt nhé.

Bình luận (0)
NH
Xem chi tiết
NL
23 tháng 4 2022 lúc 9:35

\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)

\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)

Bình luận (0)
QT
Xem chi tiết
NL
3 tháng 10 2021 lúc 15:38

Hình chiếu vuông góc của 1 điểm lên (Oxz) có tung độ bằng 0 và hoành độ, cao độ ko đổi

Hay \(M\left(1;0;-2\right)\)

Bình luận (0)
MV
Xem chi tiết
TT
Xem chi tiết
NL
19 tháng 3 2021 lúc 16:26

\(\overrightarrow{B'D'}=\left(2;-2;0\right)\)

Gọi \(B\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}=\left(2-x;1-y;2-z\right)\\\overrightarrow{BC}=\left(-2-x;3-y;2-z\right)\end{matrix}\right.\)

\(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BD}=\overrightarrow{B'D'}\)

\(\Rightarrow\left\{{}\begin{matrix}2-x+\left(-2-x\right)=2\\1-y+\left(3-y\right)=-2\\2-z+\left(2-z\right)=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;3;2\right)\)

Bình luận (0)
QT
Xem chi tiết
GD
9 tháng 3 2021 lúc 18:26

Chọn A

Bình luận (0)
HH
9 tháng 3 2021 lúc 19:01

Gọi G là trọng tâm tam giác ABC

\(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{0}\Leftrightarrow\overrightarrow{A'G}+\overrightarrow{GA}+\overrightarrow{B'G}+\overrightarrow{GB}+\overrightarrow{C'G}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)

Goi G la trong tam tam giac A'B'C'

Lai co: \(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=\overrightarrow{0}\)

\(\Rightarrow G'\equiv G\Rightarrow G'=\left(1;0;-2\right)\)

Bình luận (0)
NT
6 tháng 6 2022 lúc 18:50

CHỌN A

Bình luận (0)
NH
Xem chi tiết
NL
25 tháng 2 2021 lúc 18:57

Bạn ghi rõ đề ra được ko nhỉ (nếu khó ghi thì có thể chụp hình và gửi)

Chứ đề bài thế này thì không dịch được.

Bình luận (0)
TL
Xem chi tiết
NL
29 tháng 1 2021 lúc 16:17

\(\overrightarrow{OC}=-3i+2j+5k\Rightarrow C\left(-3;2;5\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;8;0\right)\\\overrightarrow{AC}=\left(-4;5;4\right)\end{matrix}\right.\)

Hai vecto \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương nên A;B;C tạo thành 1 tam giác

b. Gọi \(E\left(x;y;z\right)\Rightarrow\overrightarrow{BE}=\left(x-2;y-5;z-1\right)\)

\(\overrightarrow{OA}=\left(1;-3;1\right)\) , đồng thời OA=2BE

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{OA}=2\overrightarrow{BE}\\\overrightarrow{OA}=-2\overrightarrow{BE}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(1;-3;1\right)=\left(2x-4;2y-10;2z-2\right)\\\left(1;-3;1\right)=\left(4-2x;10-2y;2-2z\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}E\left(\dfrac{5}{2};\dfrac{7}{2};\dfrac{3}{2}\right)\\E\left(\dfrac{3}{2};\dfrac{13}{2};\dfrac{1}{2}\right)\end{matrix}\right.\)

Bình luận (0)
NL
29 tháng 1 2021 lúc 16:20

c.

Gọi \(M\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;10;0\right)\\\overrightarrow{AM}=\left(x-1;y+3;z-1\right)\\\overrightarrow{CM}=\left(x+3;y-2;z-5\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\overrightarrow{AB}=\left(3;30;0\right)\\2\overrightarrow{AM}=\left(2x-2;2y+6;2z-2\right)\\3\overrightarrow{CM}=\left(3x+9;3y-6;3z-15\right)\end{matrix}\right.\)

\(3\overrightarrow{AB}+2\overrightarrow{AM}=3\overrightarrow{CM}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3+2x-2=3x+9\\30+2y+6=3y-6\\0+2z-2=3z-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=42\\z=13\end{matrix}\right.\)

\(\Rightarrow M\left(-8;42;13\right)\)

Bình luận (0)