A= \(\dfrac{\sqrt{c+ab}+\sqrt{2\left(a^2+b^2\right)}}{1+\sqrt{ab}}\ge1\)
Cho a,b,c >0
a+b+c=1
a)Cho 0 < c ; c < b ; b < a . CMR:\(\sqrt{c\left(a-c\right)}+\sqrt{b\left(b-c\right)}\le\sqrt{ab}\)
b)Cho \(x\ge1;y\ge1\). CMR:\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho a,b,c > 0 thỏa a+b+c=abc. Tìm GTLN của BT :
\(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Đặt BT đề cho là P
\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
may cai nay tuong hoi truoc co nguoi dang roi ma
ta có:
\(\sqrt{\dfrac{\left(a+b\right).\left(a+c\right)}{a^2}}\le\dfrac{1}{2}.\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)=a+\dfrac{b}{2}+\dfrac{c}{2}\)
tương tự thì ta có:
\(VP\le3+2\left(a+b+c\right)\)
\(VP=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}\)
từ các điều trên ta thấy cần CM:
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge a+b+c\)
bạn tự CM nốt ạ
từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)
ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)
=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)
\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )
^_^
rút gọn biểu thức
A=\(\dfrac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\dfrac{1}{a^2+\sqrt{a}}\) với a >0
B=\(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\) với a>0 b>0 và a khác b
C=\(\dfrac{a\sqrt{b}+b}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\) với a>b>0
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)
Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)
Bài 1:
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{c(a-c)}+\sqrt{c(b-c)})^2\leq [c+(b-c)][(a-c)+c]=ab$
$\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=2c$
Bài 2:
Áp dụng BĐT Bunhiacopkxy:
\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ab-b})^2\)
\(\leq (a+b)(ab-a+ab-b)=(a+b)(2ab-a-b)\)
Áp dụng BĐT AM-GM:
$(a+b)(2ab-a-b)\leq \left(\frac{a+b+2ab-a-b}{2}\right)^2=(ab)^2$
Do đó:
$(a\sqrt{b-1}+b\sqrt{a-1})^2\leq (ab)^2$
$\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=2$
Lời giải:
Ta có:
\(A=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2=(a+1)^2+\left[\frac{(a+1)^2+1}{a+1}\right]^2\)
Đặt $a+1=t(t\neq 0)$ thì:
$A=t^2+(\frac{t^2+1}{t})^2=t^2+(t+\frac{1}{t})^2$
$=2t^2+\frac{1}{t^2}+2\geq 2\sqrt{2t^2.\frac{1}{t^2}}+2=2\sqrt{2}+2$ theo BĐT AM-GM
Vậy $A_{\min}=2\sqrt{2}+2$
Giá trị này đạt được khi $t=\frac{\pm 1}{\sqrt[4]{2}}$
$\Leftrightarrow a=\frac{\pm 1}{\sqrt[4]{2}}-1$
Cho a,b,c>0 thỏa mãn ab+bc+ca=1. CMR:
\(\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^3\le\dfrac{3}{2}\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\)
Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại
Ta có:
\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)
\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)
\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)
\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)
Đúng theo AM-GM:
\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)
Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)
Bài 1: (không dùng Cô-si) Bình phương hai vế, ta được:
\(c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(ac-2c^2+bc+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(0\le\left(ab-ac-bc+c^2\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(a-c\right)\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\)(đúng)
Vậy BĐT đúng. Xảy ra khi \(a=b=2c\)
mong mọi người giúp mình câu này
cho a,b,c >0 có \(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\) tìm giá trị lớn nhất của \(\dfrac{a}{\sqrt{bc\left(a^2+1\right)}}+\dfrac{b}{\sqrt{ca\left(b^2+1\right)}}+\dfrac{c}{\sqrt{ab\left(c^2+1\right)}}\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)
\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)
\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)