Violympic toán 9

NH

Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)

Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)

AH
30 tháng 7 2020 lúc 23:35

Bài 1:

Áp dụng BĐT Bunhiacopxky:

$(\sqrt{c(a-c)}+\sqrt{c(b-c)})^2\leq [c+(b-c)][(a-c)+c]=ab$

$\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=2c$

Bình luận (0)
AH
30 tháng 7 2020 lúc 23:37

Bài 2:

Áp dụng BĐT Bunhiacopkxy:

\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ab-b})^2\)

\(\leq (a+b)(ab-a+ab-b)=(a+b)(2ab-a-b)\)

Áp dụng BĐT AM-GM:

$(a+b)(2ab-a-b)\leq \left(\frac{a+b+2ab-a-b}{2}\right)^2=(ab)^2$

Do đó:

$(a\sqrt{b-1}+b\sqrt{a-1})^2\leq (ab)^2$

$\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=2$

Bình luận (0)
AH
30 tháng 7 2020 lúc 23:42

Lời giải:

Ta có:

\(A=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2=(a+1)^2+\left[\frac{(a+1)^2+1}{a+1}\right]^2\)

Đặt $a+1=t(t\neq 0)$ thì:

$A=t^2+(\frac{t^2+1}{t})^2=t^2+(t+\frac{1}{t})^2$

$=2t^2+\frac{1}{t^2}+2\geq 2\sqrt{2t^2.\frac{1}{t^2}}+2=2\sqrt{2}+2$ theo BĐT AM-GM

Vậy $A_{\min}=2\sqrt{2}+2$

Giá trị này đạt được khi $t=\frac{\pm 1}{\sqrt[4]{2}}$

$\Leftrightarrow a=\frac{\pm 1}{\sqrt[4]{2}}-1$

Bình luận (0)
LH
31 tháng 7 2020 lúc 0:00

mình mới gửi lên vài câu hỏi toán :vv giúp mình với ạ

Bình luận (0)

Các câu hỏi tương tự
EC
Xem chi tiết
DC
Xem chi tiết
BL
Xem chi tiết
DD
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BL
Xem chi tiết
DT
Xem chi tiết