Những câu hỏi liên quan
SN
Xem chi tiết
H24
9 tháng 4 2017 lúc 8:12

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

Bình luận (0)
NH
9 tháng 4 2017 lúc 8:12

Ta có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

~ Chúc bn học tốt ~

Bình luận (0)
TT
9 tháng 4 2017 lúc 8:11

*Sóc* Nhí *Nhảnh *

11⋅2" id="MathJax-Element-1-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+12⋅3" id="MathJax-Element-2-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+13⋅4" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+...+149⋅50" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 5 2023 lúc 21:18

Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + .. + 1/50
Xét vế trái:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) - ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) + (1/2 + 1/4 + 1/6 + ... + 1/50 ) - 2 . ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/49 + 1/50 ) - ( 1 + 1/2 + 1/3 + ... + 1/25 )
= 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50 (1)
Từ (1) => Vế trái = Vế phải 
=> Điều phải chứng minh 
- HokTot - 

Bình luận (0)
TK
Xem chi tiết
NM
7 tháng 10 2021 lúc 9:38

\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{25}\\ =\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

Bình luận (3)
NT
Xem chi tiết
AH
12 tháng 12 2017 lúc 0:50

Lời giải:

\(\text{VT}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+....+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}....+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{49}+\frac{1}{50}\)

Do đó ta có đpcm.

Bình luận (0)
NQ
Xem chi tiết
DS
30 tháng 4 2017 lúc 8:28

bài này tương tự bài trênHỏi đáp Toán

Bình luận (0)
H24
Xem chi tiết
TM
23 tháng 6 2016 lúc 9:14

1/1.2 + 1/2.3 + ... + 1/49.50 

Đặt A = 1/1.2 + 1/2.3 + ... + 1/49.50

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

Vì 49/50 < 1

=> A < 1

Bình luận (0)
TA
23 tháng 6 2016 lúc 9:12

Ta có : 1/1.2 + 1/2.3 + ... + 1/49.50

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

= 1 - 1/50

= 49/50

Vì 49/50 > 1

Nên 1/1.2 + 1/2.3 + ... + 1/49.50 < 1

Bình luận (0)
CN
23 tháng 6 2016 lúc 14:14

1/1.2 + 1/2.3 + ... + 1/49.50 

Đặt A = 1/1.2 + 1/2.3 + ... + 1/49.50

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

Vì 49/50 < 1

=> A < 1

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 8 2023 lúc 19:30

\(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2021\cdot2022\cdot2023}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{2021\cdot2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2021\cdot2022}-\dfrac{1}{2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4090506}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2045252}{4090506}=\dfrac{1022626}{4090506}=\dfrac{511313}{2045253}\)

Bình luận (0)
KS
2 tháng 8 2023 lúc 8:16

`1/(1.2.3) + 1/(2.3.4) + ... + 1/(2021 . 2022 .2023)`

`=> 2/(1.2.3) + 2/(2.3.4) + ... + 2/(2021 . 2022. 2023)`

`= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(2021.2022) - 1/(2022 . 2023)`

`= 1/2 - 1/4090506`

`=4090506/8181012 - 2/8181012`

`= 4090504/8181012`

Bình luận (0)
TP
Xem chi tiết
TT
21 tháng 3 2017 lúc 21:20

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{4949}{9900}\)

Bình luận (0)
NT
21 tháng 3 2017 lúc 21:22

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

...

Bình luận (4)
NL
21 tháng 3 2017 lúc 21:30

E = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

2E = \(\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\)

= \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}\right)\)+\(\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\) +...+ \(\left(\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

= \(\dfrac{1}{1.2}\) - \(\dfrac{1}{99.100}\)= \(\dfrac{1}{2}-\dfrac{1}{9900}\) = \(\dfrac{4949}{9900}\)

Bình luận (2)
H24
Xem chi tiết
H24
25 tháng 10 2021 lúc 17:01

\(0,125.\dfrac{3}{7}-\dfrac{1}{8}.\dfrac{11}{7}=\dfrac{1}{8}.\dfrac{3}{7}-\dfrac{1}{8}.\dfrac{11}{7}=\dfrac{1}{8}\left(\dfrac{3}{7}-\dfrac{11}{7}\right)=\dfrac{1}{8}.-\dfrac{8}{7}=-\dfrac{1}{7}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Bình luận (0)