Đại số lớp 6

TP

\(E=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\)

TT
21 tháng 3 2017 lúc 21:20

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{4949}{9900}\)

Bình luận (0)
NT
21 tháng 3 2017 lúc 21:22

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

...

Bình luận (4)
NL
21 tháng 3 2017 lúc 21:30

E = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

2E = \(\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\)

= \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}\right)\)+\(\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\) +...+ \(\left(\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

= \(\dfrac{1}{1.2}\) - \(\dfrac{1}{99.100}\)= \(\dfrac{1}{2}-\dfrac{1}{9900}\) = \(\dfrac{4949}{9900}\)

Bình luận (2)

Các câu hỏi tương tự
KM
Xem chi tiết
NV
Xem chi tiết
TA
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết
DT
Xem chi tiết
KM
Xem chi tiết
KL
Xem chi tiết