Bài 1:Tìm x biết:
a,\(9^{x-1}=\dfrac{1}{9}\) b,\(\dfrac{3^x}{27}=27\) c\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-6^x+2=6^7+6^4\)
d,\(2\cdot3^x+3^{x-1}=7\cdot\left(3^2+2\cdot6^2\right)\)
(Giúp mình nhanh nhé,mình đang gấp lắm ạ.)
Bài 1:Tìm x biết:
a,\(9^{x-1}=\dfrac{1}{9}\) b,\(\dfrac{3^x}{27}=27\) c\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-6^x+2=6^7+6^4\)
d,\(2\cdot3^x+3^{x-1}=7\cdot\left(3^2+2\cdot6^2\right)\)
(Giúp mình nhanh nhé,mình đang gấp lắm ạ.)
`a, 9^(x-1)=1/9`
`=> 9^(x-1)=9^(-1)`
`=>x-1=-1`
`=>x=-1+1`
`=>x=0`
Vậy: `x=0`
`b, (3^x)/27 = 27`
`=> (3^x)/(3^3)=3^3`
`=> 3^x = 3^3 . 3^3`
`=> 3^x = 3^6`
`=>x=6`
Vậy: `x=6`
\(a,9^{x-1}=\dfrac{1}{9}\)
\(9^{x-1}=9^{-1}\)
\(x-1=-1\)
\(x=-1+1\)
\(x=0\)
Vậy ....
\(b,\dfrac{3^x}{27}=27\)
\(3^x=27.27\)
\(3^x=729\)
\(3^x=3^6\)
\(x=6\)
Vậy ....
\(d,2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)
\(2.3^x+3^x:3=7.\left(9+2.36\right)\)
\(2.3^x+3^x.\dfrac{1}{3}=7.\left(9+72\right)\)
\(3^x.\left(2+\dfrac{1}{3}\right)=7.81\)
\(3^x.\dfrac{7}{3}=567\)
\(3^x=567:\dfrac{7}{3}\)
\(3^x=243\)
\(3^x=3^5\)
Vậy ....
Tìm m thoả mãn điều kiện sau (m ϵ N)
2.2\(^2\)+3.2\(^3\)+\(4.2^4\)+.....+m.2\(^m\) = \(2^{m+11}\)
Đặt A = 2.2 2 + 3.2 3 + 4.2 4 + . . . + m .2 m Ta có: A = 2.2 2 + 3.2 3 + 4.2 4 + . . . + m .2 m ⇒ 2 A = 2 ( 2.2 2 + 3.2 3 + 4.2 4 + . . . + n .2 n ) ⇒ 2 A = 2.2 3 + 3.2 4 + 4.2 5 + . . . + m .2 m + 1 ⇒ 2 A − A = 2.2 2 + ( 3.2 3 − 2.2 3 ) + . . . + ( m − m + 1 ) .2 m − m .2 m + 1 ⇒ A = 2.2 2 + 2 3 + 2 4 + . . . + 2 n − n .2 n + 1 ⇒ A = 2 2 + ( 2 2 + 2 3 + . . . + 2 m + 1 ) − ( m + 1 ) .2 m + 1 ⇒ A = − 2 2 − ( 2 2 + 2 3 + . . . + 2 m + 1 ) + ( m + 1 ) .2 m + 1 Đặt B = 2 2 + 2 3 + . . . + 2 m + 1 ⇒ 2 B = 2 3 + 2 4 + . . . + 2 m + 2 ⇒ 2 B − B = 2 m + 2 − 2 2 ⇒ B = 2 m + 2 − 2 2 ⇒ A = 2 2 − 2 m + 2 + 2 2 + ( m + 1 ) .2 m + 1 ⇒ A = ( m + 1 ) .2 m + 1 − 2 m + 2 ⇒ A = 2 m + 1 ( m + 1 − 2 ) ⇒ A = ( m − 1 ) .2 m + 1 = 2 ( m − 1 ) .2 n Mà A = 2 ( m − 1 ) .2 m = 2 m + 10 ⇒ 2 ( m + 1 ) = 2 10 ⇒ m − 1 = 2 9 ⇒ m − 1 = 512 ⇒ m = 513 Vậy m = 513
A= \(\left(\dfrac{1}{2}-1\right)\)\(\left(\dfrac{1}{3}-1\right)\).........\(\left(\dfrac{1}{10}-1\right)\). So sánh A với \(\dfrac{-1}{9}\)
B= \(\left(\dfrac{1}{4}-1\right)\)\(\left(\dfrac{1}{9}-1\right)\)...........\(\left(\dfrac{1}{100}-1\right)\). So sánh B với \(\dfrac{-11}{21}\)
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
a, 1 + \(\dfrac{1}{2}\).(1+2)+\(\dfrac{1}{3}\).(1+2+3)+...+\(\dfrac{1}{16}\).(1+2+3+...+16)
b, \(\left[\left(\dfrac{2}{196}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]\):\(\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
c, \(\dfrac{\dfrac{1}{2}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\)x\(\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)+\(\dfrac{5}{8}\)
d, \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}\)+\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
a: \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(=\dfrac{1}{2}\cdot152=76\)
b: Sửa đề: \(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right)\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{193}\cdot\dfrac{193}{17}-\dfrac{3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left[\dfrac{7}{1931}\cdot\dfrac{1931}{25}+\dfrac{11}{3862}\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{17}-\dfrac{3}{34}+\dfrac{33}{34}\right):\left(\dfrac{7}{25}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{2}{17}+\dfrac{30}{34}\right):\dfrac{14+11+225}{50}\)
\(=1\cdot\dfrac{50}{250}=1\cdot\dfrac{1}{5}=\dfrac{1}{5}\)
c: Sửa đề: \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
d: \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)
\(=\dfrac{1}{3}+1:\dfrac{3}{2}=1\)
a, \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}.\sqrt{\dfrac{49}{4}}\right)\): \(\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]\): \(\dfrac{1704}{445}\)
b, \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
c, \(\left(1-\dfrac{1}{2}\right)\)x\(\left(1-\dfrac{1}{3}\right)\)x.....x\(\left(1-\dfrac{1}{n+1}\right)\) (n ϵ N)
d, -66 x \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 x -37 + 63 x -124
e, \(\dfrac{7}{4}\) x \(\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)
\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)
\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)
b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)
d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)
\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)
\(=-17-12400=-12417\)
e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)
1. tìm x
a, 2x - \(\dfrac{1}{2}\) : \(\dfrac{3}{4}\) = \(\dfrac{12}{9}\)
b, x\(^2\) - 2 = 0
2. Cho
A = \(\dfrac{1,11+0,19-13.2}{2,06+0,54}\) - \(\left(\dfrac{1}{2}+\dfrac{1}{4}\right)\) : 2
B = \(\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right)\) : \(2\dfrac{23}{26}\)
a, Rút gọn A, B
b, Tìm x ϵ Z để A < x < B
a)
=\(2x-\dfrac{1}{2}=\dfrac{12}{9}\cdot\dfrac{3}{4}=1\)
=\(2x=1+\dfrac{1}{2}=1.5\)
=\(x=1.5:2=0.75\)
b)
=\(x^2=0+2=2\)
TH1:\(x=2\)
TH2:\(x=-2\)
Bài 1:
a: \(2x-\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{12}{9}\)
=>\(2x-\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{4}{3}\)
=>\(2x=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
=>x=2/2=1
b: \(x^2-2=0\)
=>\(x^2=2\)
=>\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Bài 2:
a: \(A=\dfrac{1,11+0,19-13\cdot2}{2,06+0,54}-\left(\dfrac{1}{2}+\dfrac{1}{4}\right):2\)
\(=\dfrac{1,3-26}{2,6}-\dfrac{3}{4}:2\)
\(=-9,5-\dfrac{3}{8}=-\dfrac{79}{8}\)
\(B=\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right):\left(2\dfrac{23}{26}\right)\)
\(=\left(5+\dfrac{7}{8}-2-\dfrac{1}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}\)
\(=\left(3+\dfrac{1}{8}\right)\cdot\dfrac{26}{75}=\dfrac{25}{8}\cdot\dfrac{26}{75}=\dfrac{13}{12}\)
b: A<x<B
=>\(-\dfrac{79}{8}< x< \dfrac{13}{12}\)
mà \(x\in Z\)
nên \(x\in\left\{-9;-8;...;0;1\right\}\)
Một hồ bơi dạng hình hộp chữ nhật có kích thước trong lòng hồ là: Chiều dài 12m, chiều rộng 5m, chiều sâu 3m. a) Tính diện tích cần lát gạch bên trong lòng hồ (mặt đấy và 4 mặt xung quanh). b) Biết gạch hình vuông dùng để lát hồ bơi có cạnh 50cm. Hỏi cần mua ít nhất bao nhiêu viên gạch để lát bên trong hồ bơi.
a: Diện tích cần lát gạch bên trong lòng hồ là:
\(\left(12+5\right)\cdot2\cdot3+12\cdot5=162\left(m^2\right)\)
b: Diện tích 1 viên gạch là: \(50^2=2500\left(cm^2\right)\)
\(162m^2=1620000cm^2\)
Số viên gạch cần mua là:
\(1620000:2500=648\left(viên\right)\)
Một hồ bơi dạng hình hợp chữ nhật có kích thước như sau: chiều dài là 12 m và chiều rộng 5 m, chiều sâu là 3 m a) Tính thể tích của hồi bơi. b) Người ta muốn lót gạch bên trong lòng hồ (mặt đấy và 4 mặt xung quanh), biết mỗi viên gạch hình vuông có cạnh là 50 cm và mỗi thùng chứa 8 viên gạch. Hỏi để lót hết mặt trong của hồ thì cần mua bao nhiều thùng gạch?
a: Thể tích của hồ bơi là: \(12\cdot5\cdot3=60\cdot3=180\left(m^3\right)\)
b: Diện tích cần lót gạch là:
\(\left(12+5\right)\cdot2\cdot3+12\cdot5=6\cdot17+60=102+60=162\left(m^2\right)\)
Diện tích 1 viên gạch là: \(50^2=2500\left(cm^2\right)=0,25\left(m^2\right)\)
Diện tích của 8 viên gạch trong 1 thùng là: \(0,25\cdot8=2\left(m^2\right)\)
Số thùng gạch cần dùng là:
162:2=81(thùng)
a) Thể tích của hồ bơi là:
$12\cdot5\cdot3=180(m^3)$
b) Diện tích cần lót hết mặt trong của hồ là:
$2\cdot(12+5)\cdot3+12\cdot5=162(m^2)$
Diện tích mỗi viên gạch là:
$50\cdot50=2500(cm^2)=0,25(m^2)$
Để lót hết mặt trong của hồ cần số viên gạch là:
$162:0,25=648(\text{ viên })$
Để lót hết mặt trong của hồ thì cần mua:
$648:8=81(\text{ thùng gạch })$
Đ/s: ...
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]X\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}\) : \(\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\)
b, tìm x, y, z thoả mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}\) + \(\sqrt{\left(y+\sqrt{2}\right)^2}\) + |x + y + z| = 0
\(a,\cdot\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\\ =\left[\left(8:2,4\right)\cdot\left(5,25:7\right)\right]:\left[\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)\right]\\ =\left(\dfrac{10}{3}\cdot\dfrac{3}{4}\right):\left(3:\dfrac{9}{2}\right)\\ =\dfrac{5}{2}:\dfrac{2}{3}\\ =\dfrac{15}{4}\)
a: \(\dfrac{\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}^2\right)\right]\right\}}{\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}}\)
\(=\dfrac{\dfrac{8}{2,4}\cdot\dfrac{5,25}{7}}{\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)}\)
\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{3}{4}}{3:\left(4\cdot\dfrac{9}{8}\right)}\)
\(=\dfrac{\dfrac{10}{4}}{3:\left(\dfrac{9}{2}\right)}=\dfrac{5}{2}:\left(3\cdot\dfrac{2}{9}\right)=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{15}{4}\)
b: \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|>=0\forall x\)
\(\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|>=0\forall y\)
\(\left|x+y+z\right|>=0\forall x,y,z\)
Do đó: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
tính hợp lý
a, A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
b, M = 1 - \(\dfrac{5}{\sqrt{196}}\) - \(\dfrac{5}{\left(2\sqrt{21}\right)^2}\) - \(\dfrac{\sqrt{25}}{204}\) - \(\dfrac{\left(\sqrt{5}\right)^2}{374}\)
a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)
\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)
\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)
\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)