Cho c>0, \((a+c)^2< ab+bc-2ac\)
Chứng minh phương trình \(ax^2+bx+c=0\)
cho các số a,b,c thỏa điều kiện \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\) chứng minh rằng phương trình ax^2+bx+c=0 luôn luôn có nghiệm
Cho a,b,c thỏa điều kiện : \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\). Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm
Lời giải:
Với $a=0$ thì pt trở thành: \(bx+c=0\)
\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)
PT luôn có nghiệm \(x=\frac{-c}{b}\)
Với $a\neq 0$
Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm
Nếu \(ac>0, c>0\Rightarrow a>0\)
Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)
\(\Leftrightarrow (c+a)^2< b(a+c)\)
Vì \(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:
\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)
Do đó pt \(ax^2+bx+c=0\) có nghiệm
cho các số a,b,c thõa điều kiện :\(\hept{\begin{cases}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{cases}}\) Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm
Ta có: \(\Delta=b^2-4ac\)
Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)
\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)
\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)
\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)
Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm
Chứng minh rằng với điều kiện: \(\hept{\begin{cases}c>0\\\left(a+c\right)^2< ab+bc-2ac\end{cases}}\) thì phương trình \(ax^2+bx+c=0\) luôn có nghiệm.
Ta có (a + c)2 < ab + bc - 2ac
<=> ab + bc - a2 - c2 - 4ac > 0 (1)
Ta lại có a2 + b2 + c2 \(\ge\)ab + bc +ca > ab + bc (2)
Từ (1) và (2) => b2 - 4ac > 0
Vậy PT luôn có nghiệm
cho hệ phương trình ax^2 +bx +c =0 với a khác 0 và 5a +2c=b chứng minh phương trình có nghiệm
Thay `b=5a+2c` vào `ax^2+bx+c=0`:
`ax^2+(5a+2c)x+c=0`
`=>Delta=(5a+2c)^2-4ac`
`=25a^2+20ac+4c^2-4ac`
`=25a^2+16ac+4c^2`
`=9a^2+(16a^2+16ac+4c^2)`
`=9a^2+(4a+2c)^2>=0`
`=>` ĐPCM
cho phương trình ax\(^2\) + bx + c = 0 (a , b, c là các hệ số , a> 0 ) . chứng minh rằng nếu b > a + c thì phương trình luôn có 2 nghiệm phân biệt.
nếu b > a+c
<=> \(b^2>\left(a+c\right)^2\\
\Leftrightarrow b^2-4ac>a^2+2ac+c^2-4ac\\
\Leftrightarrow\Delta>\left(a-c\right)^2\ge0\)
=> đpcm
Cho các số a, b, c khác 0 bất kì sao cho ac + bc + 3ab < 0. Chứng minh phương trình sau luôn có nghiệm: \(\left(ax^2+bx+c\right)\left(bx^2+cx+a\right)\left(cx^2+ax+b\right)=0\)
Biết phương trình: x2 + ax + bc = 0 và phương trình: x2 + bx + ac = 0 có 1 đúng nghiệm chung và \(a\ne b\ne c\) ; \(c\ne0\)
Chứng minh rằng: các nghiệm còn lại của hai phương trình trên là nghiệm của phương trình: x2 + cx + ab = 0
Gọi x0 là nghiệm chung của 2 phương trình
Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)
\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)
Mà \(a\ne b\Rightarrow x_0=c\)
Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2
Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)
Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)
Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:
x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0
Dùng phương pháp phản chứng để chứng minh có ít nhất một trong ba phương trình sau vô nghiệm: ax2+bx2+c=0 , bx2 +cx2+a=0, cx2+ax+b=0
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!