Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
NA
24 tháng 12 2020 lúc 18:57

ĐKXĐ \(x\ge1\)

\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}+\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{2\sqrt{x}+2}{x-1}\)

\(P=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-2\sqrt{x}-2}{x-1}\)

\(P=\dfrac{2x-2\sqrt{x}}{x-1}\)

\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Giải phương trình ???

 

Bình luận (0)
NA
24 tháng 12 2020 lúc 18:58

x > 1 

.-.

Bình luận (0)
GC
Xem chi tiết
NM
2 tháng 11 2021 lúc 7:09

\(P=\dfrac{2+x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-1}\\ P=\dfrac{\left(2-\sqrt{x}\right)\left(x+\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)^2}\)

Bình luận (0)
DF
Xem chi tiết
TA
Xem chi tiết
NT
27 tháng 7 2023 lúc 0:14

1) \(\dfrac{x+2\sqrt[]{x}}{\sqrt[]{x}-1}=8\left(1\right)\)

Điều kiện \(\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+2\sqrt[]{x}=8\left(\sqrt[]{x}-1\right)\)

\(\Leftrightarrow x-6\sqrt[]{x}+8=0\left(2\right)\)

Đặt \(t^2=x\Leftrightarrow t=\sqrt[]{x}\)

\(\left(2\right)\Leftrightarrow t^2-6t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x}=2\\\sqrt[]{x}=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\) (thỏa điều kiện)

2) \(\sqrt[]{\dfrac{2x-3}{x-1}}=2\left(1\right)\)

Điều kiện \(\dfrac{2x-3}{x-1}\ge0\Leftrightarrow\left[{}\begin{matrix}x< 1\\x\ge\dfrac{3}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

\(\Leftrightarrow2x-3=4\left(x-1\right)\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\) (thỏa điều kiện)

Bình luận (0)
NB
Xem chi tiết
TL
1 tháng 3 2023 lúc 21:28

ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`

`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`

`<=>(2x+1)/(x sqrt(x+1)) =1/x`

`<=>x(2x+1)=x sqrt(x+1)`

`<=>2x+1=sqrt(x+1)`

`=>(2x+1)^2=x+1`

`<=>4x^2+4x+1=x+1`

`<=>4x^2+3x=0`

`<=>x(4x+3)=0`

`<=>[(x=0\ (KTM)),(x=-3/4):}`

Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.

Vậy phương trình vô nghiệm.

Bình luận (2)
QA
Xem chi tiết
BB
Xem chi tiết
NT
15 tháng 10 2023 lúc 5:48

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\2x+1>=0\\x< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\x< >0\end{matrix}\right.\)

\(\dfrac{1}{x^2}+\sqrt{x+2}=\dfrac{1}{x}+\sqrt{2x+1}\)

\(\Leftrightarrow\dfrac{1}{x^2}-1+\sqrt{x+2}-\sqrt{3}=\dfrac{1}{x}-1+\sqrt{2x+1}-\sqrt{3}\)

=>\(\dfrac{1-x^2}{x^2}+\dfrac{x+2-3}{\sqrt{x+2}+\sqrt{3}}=\dfrac{1-x}{x}+\dfrac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{-\left(x+1\right)}{x^2}+\dfrac{1}{\sqrt{x+2}+\sqrt{3}}+\dfrac{1}{x}-\dfrac{2}{\sqrt{2x+1}+\sqrt{3}}\right)=0\)

=>x-1=0

=>x=1

Bình luận (0)
HM
Xem chi tiết
TC
27 tháng 8 2021 lúc 10:41

undefined

Bình luận (0)
TC
27 tháng 8 2021 lúc 10:44

undefined

Bình luận (0)
NT
27 tháng 8 2021 lúc 13:54

b: Ta có: \(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)

\(\Leftrightarrow2\sqrt{x+2}+\dfrac{1}{3}\cdot3\sqrt{x+2}-\dfrac{3}{2}\sqrt{x+2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}\cdot\dfrac{3}{2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{2\sqrt{2}}{3}\)

\(\Leftrightarrow x+2=\dfrac{8}{9}\)

hay \(x=-\dfrac{10}{9}\)

Bình luận (0)
H24
Xem chi tiết
NL
1 tháng 6 2021 lúc 18:02

ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le3\\x\ne1\end{matrix}\right.\)

\(\dfrac{\sqrt{x+1}\left(\sqrt{x+1}+\sqrt{3-x}\right)}{2\left(x-1\right)}>x-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x+1+\sqrt{-x^2+2x+3}}{x-1}>2x-1\)

- TH1: Với \(x>1\) BPT tương đương:

\(x+1+\sqrt{-x^2+2x+3}>\left(2x-1\right)\left(x-1\right)\)

\(\Leftrightarrow\sqrt{-x^2+2x+3}>2x^2-4x\)

Đặt \(\sqrt{-x^2+2x+3}=t\ge0\Rightarrow2x^2-4x=-2t^2+6\)

BPt trở thành: \(t>-2t^2+6\Leftrightarrow2t^2+t-6>0\)

\(\Rightarrow t>\dfrac{3}{2}\Rightarrow-x^2+2x+3>\dfrac{9}{4}\Rightarrow1< x< \dfrac{2+\sqrt{7}}{2}\)

TH2: với \(x< 1\) BPT tương đương:

\(x+1+\sqrt{-x^2+2x+3}< \left(2x-1\right)\left(x-1\right)\)

\(\Leftrightarrow\sqrt{-x^2+2x+3}< 2x^2-4x\)

Tương tự như trên, đặt  \(t=\sqrt{-x^2+2x+3}\ge0\) ta được \(0\le t< \dfrac{3}{2}\)

\(\Rightarrow-x^2+2x+3< \dfrac{9}{4}\) \(\Rightarrow-1\le x< \dfrac{2-\sqrt{7}}{2}\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}-1\le x< \dfrac{2-\sqrt{7}}{2}\\1< x< \dfrac{2+\sqrt{7}}{2}\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết