tìm gia strị lớn nhất cua biểu thức A=\(\dfrac{1}{3x-2\sqrt{6x}+5}\)
a.tìm giá trị lớn nhất của biểu thức:P=\(\sqrt{3x-5}+\sqrt{7-3x}\)
b.cho x>1, tìm GTNN của biểu thức: A=2x+\(\dfrac{9}{x-1}\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
tìm giá trị lớn nhất của biểu thức
\(A=\frac{1}{3x-2\sqrt{6x}+5}\)
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)
Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)
Theo Cauchy:
\(3\sqrt{2a-1}=3\sqrt{1\left(2a-1\right)}\le\dfrac{3\left(1+2a-1\right)}{2}=3a\)
\(a\sqrt{5-4a^2}\le\dfrac{a^2+5-4a^2}{2}=\dfrac{5-3a^2}{2}\)
\(A\le3a+\dfrac{5-3a^2}{2}=\dfrac{5-3a^2+6a}{2}=\dfrac{-3\left(a-1\right)^2}{2}+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x=1\)
Câu 1:Tìm giá trị lớn nhất của biểu thức:P=\(\dfrac{3x^2+6x+10}{x^2+2x+3}\); (xϵR)
Câu 2:Tìm giá trị lớn nhất của biểu thức:M=\(\dfrac{2x^2+6x+7}{x^2+3x+3}\); (xϵR)
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Rút gọn biểu thức A
b) Tìm x để biểu thức A đặt giá trị lớn nhất
Ai làm đúng dễ hiểu nhất tớ bank 5 coin^^
a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) (ĐK: \(x\ne1,x\ge0\))
\(A=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\left[\dfrac{\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
b) Ta có:
\(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà: \(2>0\Rightarrow\dfrac{2}{\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)
Dấu "=" xảy ra:
\(\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=2:\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{max}=\dfrac{8}{3}\) khi \(x=-\dfrac{1}{2}\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{6x-2}{3x^2+1}\)
\(A=\dfrac{6x-2}{3x^2+1}\\ \Leftrightarrow3Ax^2+A=6x-2\\ \Leftrightarrow3Ax^2-6x+A+2=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta'=9-3\left(A+2\right)\ge0\\ \Leftrightarrow3-3A\ge0\\ \Leftrightarrow A\le1\)
Vậy A chỉ có max, không có min
\(A_{max}=1\Leftrightarrow3x^2+1=6x-2\Leftrightarrow3\left(x-1\right)^2=0\Leftrightarrow x=1\)