Violympic toán 9

BB

Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)

NM
19 tháng 5 2022 lúc 11:13

Theo Cauchy:

\(3\sqrt{2a-1}=3\sqrt{1\left(2a-1\right)}\le\dfrac{3\left(1+2a-1\right)}{2}=3a\)

\(a\sqrt{5-4a^2}\le\dfrac{a^2+5-4a^2}{2}=\dfrac{5-3a^2}{2}\)

\(A\le3a+\dfrac{5-3a^2}{2}=\dfrac{5-3a^2+6a}{2}=\dfrac{-3\left(a-1\right)^2}{2}+4\le4\)

Vậy \(A_{max}=4\Leftrightarrow x=1\)

Bình luận (1)

Các câu hỏi tương tự
NS
Xem chi tiết
LH
Xem chi tiết
BB
Xem chi tiết
LH
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NN
Xem chi tiết
DC
Xem chi tiết
BB
Xem chi tiết