GL

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

a) Rút gọn biểu thức A

b) Tìm x để biểu thức A đặt giá trị lớn nhất

 

Ai làm đúng dễ hiểu nhất tớ bank 5 coin^^

H9
24 tháng 8 2023 lúc 18:00

a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) (ĐK: \(x\ne1,x\ge0\))

\(A=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\left[\dfrac{\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{2}{x+\sqrt{x}+1}\)

b) Ta có:

\(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Mà: \(2>0\Rightarrow\dfrac{2}{\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)

Dấu "=" xảy ra:

\(\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{8}{3}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=2:\dfrac{8}{3}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{max}=\dfrac{8}{3}\) khi \(x=-\dfrac{1}{2}\)

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
LP
Xem chi tiết
PP
Xem chi tiết
YT
Xem chi tiết
QM
Xem chi tiết
CP
Xem chi tiết
TM
Xem chi tiết
DK
Xem chi tiết
H24
Xem chi tiết