Những câu hỏi liên quan
ND
Xem chi tiết
GD

Biểu thức nào em?

Bình luận (1)
H24
Xem chi tiết
OO
Xem chi tiết
NN
14 tháng 10 2017 lúc 5:52

a,

\(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2\)

\(=>A=\dfrac{x^2+4x+6}{3}\ge\dfrac{2}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2/3 , dấu ''='' xảy ra khi và chỉ khi x = -2 .

b, \(Ta,c\text{ó}:\left|1-2x\right|\ge0\)

\(=>4+\left|1-2x\right|\ge4\)

\(=>\dfrac{4+\left|1+2x\right|}{5}\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của biểu thức là 4/5 , dấu bằng xảy ra khi và chỉ khi 1 - 2x = 0 => x = 1/2

c,

\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)

\(=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\ge\dfrac{5}{1}=5\)

Vậy giá trị nhỏ nhất của biểu thức là 5 , dấu '='' xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}2x+1=0\\y+1=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)

Bình luận (0)
HP
Xem chi tiết
ND
2 tháng 1 2018 lúc 19:17

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

Bình luận (0)
NT
3 tháng 1 2018 lúc 9:07

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

Bình luận (0)
CN
Xem chi tiết
SG
Xem chi tiết
NM
Xem chi tiết
NT
17 tháng 6 2022 lúc 10:43

Bài 1: 

a: \(B=\left(x+2\right)^2+\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)

Dấu '=' xảy ra khi x=-2 và y=1/5

b: \(C=\left(x+3\right)^4+1\ge1\)

Dấu '=' xảy ra khi x=-3

c: \(D=x^2-4x+4+11=\left(x-2\right)^2+11\ge11\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
HK
Xem chi tiết
LG
10 tháng 12 2017 lúc 11:42

Bài 1:

\(B=\dfrac{4\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{\left(x^2-25\right)}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)

\(=\dfrac{4\left(x+3\right)^2}{\left(3x+5-2x\right)\left(3x+5+2x\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{\left(4x+15-x\right)\left(4x+15+x\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{5\left(x-5\right)\left(x+1\right)}-\dfrac{3\left(x+3\right)\left(x+1\right)}{15\left(x+5\right)\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{x+5}{5\left(x+1\right)}-\dfrac{x+1}{5\left(x+5\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+5\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4\left(x^2+6x+9\right)-\left(x^2+10x+25\right)-\left(x^2+2x+1\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4x^2+24x+36-x^2-10x-25-x^2-2x-1}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2x^2+12x+10}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+6x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+5x+x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x+5\right)\left(x+1\right)}{5\left(x+5\right)\left(x+1\right)}=\dfrac{2}{5}\)

Bình luận (5)
PL
10 tháng 12 2017 lúc 18:46

Bài 2.

Sửa đề

a) \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)

Giải

Ta sẽ phân tích vế phải

VP = \(\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)

VP = \(\dfrac{a\left(x^2-4\right)+bx\left(x+2\right)+cx\left(x-2\right)}{x\left(x^2-4\right)}\)

VP = \(\dfrac{ax^2-4a+bx^2+2bx+cx^2-2cx}{x\left(x^2-4\right)}\)

VP = \(\dfrac{x^2\left(a+b+c\right)+2x\left(b-c\right)-4a}{x\left(x^2-4\right)}\)

Tương tự , ta cũng sẽ phân tích VT

VT = \(\dfrac{2x.5-4}{x\left(x^2-4\right)}\)

Đồng nhất hai VT và VP , ta có :

\(x^2\left(a+b+c\right)+2x\left(b-c\right)-4a=2.5x-4\)

* a + b + c = 0 => 1 + c + 5 + c = 0 => 2c = - 6 => c = - 3

* b - c = 5 => b = c + 5 => b = - 3 + 5 => b = 2

* a = 1

Vậy , a = 1 ; b = 2 ; c = -3

b) Ta sẽ phân tích VP

VP = \(\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)

VP = \(\dfrac{a\left(x^2+x+1\right)+\left(bx+c\right)\left(x-1\right)}{x^3-1}\)

VP = \(\dfrac{ax^2+ax+a+bx^2-bx+cx-c}{x^3-1}\)

VP = \(\dfrac{x^2\left(a+b\right)+x\left(a-b+c\right)+a-c}{x^3-1}\)

Đồng nhất VP và VT , ta được :

\(x^2\left(a+b\right)+x\left(a-b+c\right)+a-c=1\)

* a + b = 0 => a = - b => b = \(-\dfrac{1}{3}\)

* a - b + c = 0 => a + a + a - 1 = 0 => 3a = 1 => a = \(\dfrac{1}{3}\)

* a - c = 1 => c = a - 1 => c = \(\dfrac{1}{3}\) - 1 = \(-\dfrac{2}{3}\)

Vậy , a = \(\dfrac{1}{3}\) ; b = \(-\dfrac{1}{3}\); c = \(-\dfrac{2}{3}\)

Bài 1 bạn Giang làm rồi thì thôi nhé

Bình luận (9)
HK
10 tháng 12 2017 lúc 11:21

Kiểm tra giùm mk câu a bài 2 nha!!! ĐỀ BÀI!!!

Bình luận (0)
MC
Xem chi tiết
NL
5 tháng 4 2021 lúc 21:04

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

Bình luận (1)