\(B=\dfrac{2x+4}{x^2+2}\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{2x+4}{x^2+2}\le\dfrac{2x+4}{2}\)
Dấu "=" xảy ra khi:
\(x^2=0\Rightarrow x=0\)
\(\Rightarrow MAX_B=\dfrac{2.0+4}{0^2+2}=\dfrac{4}{2}=2\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\)
\(\left(x-2\right)^2\ne0\)
\(\left(x-2\right)^2\ge0\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\le\dfrac{4x^2-4x-7}{1}\)
\(MAX_C=\dfrac{4.3^2-4.3-7}{\left(3-2\right)^2}=\dfrac{17}{1}=17\)