Những câu hỏi liên quan
NN
Xem chi tiết
AH
5 tháng 7 2017 lúc 9:41

Lời giải:

BPT cần chứng minh tương đương \(2\sin x+\tan x-3x>0\)

Xét hàm \(f(x)=2\sin x+\tan x-3x\rightarrow f'(x)=2\cos x+\frac{1}{\cos^2 x}-3\)

Đặt \(\cos x=t\Rightarrow t\in (0;1)\)

Ta có \(f'(x)=2t+\frac{1}{t^2}-3=\frac{(t-1)(2t^2-t-1)}{t^2}>0\forall t\in (0;1)\)

Do đó \(f(x)\) luôn đồng biến với mọi \(x\in \left (0;\frac{\pi}{2}\right)\)

\(\Rightarrow f(x)>f(0)=0\). Ta có đpcm.

Bình luận (1)
H24
Xem chi tiết
H24
23 tháng 8 2023 lúc 19:58

Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:

a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.

b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.

c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.

d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

Bình luận (0)
NT
24 tháng 8 2023 lúc 9:58

a: tan x=-1

=>tan x=tan(-pi/4)

=>x=-pi/4+kpi

b: tan(x+20 độ)=tan 60 độ

=>x+20 độ=60 độ+k*180 độ

=>x=40 độ+k*180 độ

c: tan 3x=tan(x-pi/6)

=>3x=x-pi/6+kpi

=>2x=-pi/6+kpi

=>x=-pi/12+kpi/2

d: tan(5x+pi/4)=0

=>5x+pi/4=kpi

=>5x=-pi/4+kpi

=>x=-pi/20+kpi/5

e: cot(2x-pi/4)=0

=>2x-pi/4=pi/2+kpi

=>2x=3/4pi+kpi

=>x=3/8pi+kpi/2

Bình luận (0)
SK
Xem chi tiết
TL
1 tháng 12 2019 lúc 21:49

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
H24
Xem chi tiết
H24
23 tháng 8 2023 lúc 20:02

Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm lượng giác. Hãy xem xét từng phương trình một cách cụ thể:

a) Để giải phương trình tan(x) = 1, chúng ta có thể sử dụng công thức x = arctan(1) để tìm giá trị của x.

b) Để giải phương trình tan(x) = tan(55°), chúng ta có thể sử dụng công thức x = arctan(tan(55°)) để tìm giá trị của x.

c) Để giải phương trình tan(2x) = tan(π/5), chúng ta có thể sử dụng công thức 2x = arctan(tan(π/5)) để tìm giá trị của 2x, sau đó chia kết quả cho 2 để tìm giá trị của x.

d) Để giải phương trình tan(2x+π/3) = 0, chúng ta có thể sử dụng công thức 2x+π/3 = arctan(0) để tìm giá trị của 2x+π/3, sau đó giải phương trình để tìm giá trị của x.

e) Để giải phương trình cot(x-π/3) = 0, chúng ta có thể sử dụng công thức x-π/3 = arccot(0) để tìm giá trị của x-π/3, sau đó giải phương trình để tìm giá trị của x.

Hy vọng những thông tin này sẽ giúp bạn giải quyết các phương trình trên. Nếu bạn cần thêm thông tin hoặc giải thích chi tiết hơn, xin vui lòng cho biết.

Bình luận (0)
NT
24 tháng 8 2023 lúc 9:55

a: tan x=1

=>tan x=tan(pi/4)

=>x=pi/4+kpi

b: tan x=tan 55 độ

=>x=55 độ+k*180 độ

c: tan 2x=tan pi/5

=>2x=pi/5+kpi

=>x=pi/10+kpi/2

d: tan(2x+pi/3)=0

=>2x+pi/3=kpi

=>2x=-pi/3+kpi

=>x=-pi/6+kpi/2

e: cot(x-pi/3)=0

=>x-pi/3=pi/2+kpi

=>x=5/6pi+kpi

Bình luận (0)
MD
Xem chi tiết
NL
6 tháng 7 2021 lúc 14:54

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

Bình luận (0)
PN
Xem chi tiết
NL
1 tháng 5 2021 lúc 22:15

\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)

\(=sinx+siny-sin\left(x+y\right)\)

\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)

\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)

\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)

\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
H24
31 tháng 3 2017 lúc 10:13

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

Ta có : y’ = - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2

= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).

Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

Do đó y' ≥ 0, ∀x ∈ [0 ; ).

Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x - > tan0 - 0 - 0 = 0 hay tanx > x + .

Bình luận (0)
DD
Xem chi tiết
AH
10 tháng 4 2018 lúc 0:46

Lời giải:

Sử dụng công thức lượng giác:

\(\cos a-\cos b=(-2)\sin \frac{a+b}{2}\sin \frac{a-b}{2}\) ta có:

\(\cos \frac{2\pi}{3}-\cos 2x=-2\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)\)

Suy ra:

\(\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)=\frac{\cos \frac{2\pi}{3}-\cos 2x}{-2}=\frac{1+2\cos 2x}{4}\)

\(\Rightarrow \text{VT}=4\sin x\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)=\sin x(1+2\cos 2x)\)

\(=\sin x(1+\cos 2x+\cos ^2x-\sin ^2x)\)

\(=\sin x(\cos 2x+2\cos ^2x)\)

\(=\sin x\cos 2x+2\cos ^2x\sin x\)

\(=\sin x\cos 2x+\sin 2x\cos x=\sin (x+2x)=\sin 3x\)

Do đó ta có đpcm.

Bình luận (0)