Ôn tập cuối năm giải tích lớp 12

HH
Xem chi tiết
HH
Xem chi tiết
TP
24 tháng 9 2017 lúc 6:36

1

B

6

B

11

C

16

A

21

D

2

C

7

A

12

A

17

B

22

D

3

A

8

B

13

B

18

C

23

C

4

B

9

B

14

A

19

A

24

A

5

D

10

C

15

D

20

D

25

C

Bình luận (0)
NM
Xem chi tiết
HN
15 tháng 9 2017 lúc 7:04

Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???

Bình luận (1)
HN
15 tháng 9 2017 lúc 10:19

1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)

Khoản cách từ M đến \(d_1\) là:

\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)

Khoản cách từ M đến \(d_2\) là:

\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)

Theo đề bài ta có:

\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)

\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)

\(\Leftrightarrow a^2+10a-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)

Bình luận (2)
HN
15 tháng 9 2017 lúc 13:37

2/ Ta có:

\(C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n=2^{20}-1\)

\(\Leftrightarrow2\left(C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}\right)^n=2^{21}\)

\(\Leftrightarrow C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n+...+C_{2n+1}^{2n+1}=2^{21}\)

\(\Leftrightarrow2^{2n+1}=2^{21}\)

\(\Leftrightarrow n=10\)

Ta có số hạng tổng quát trong khai triển của \(\left(\dfrac{1}{x^4}+x^7\right)^{10}\) là:

\(C_{10}^k.\left(\dfrac{1}{x^4}\right)^{10-k}.\left(x^7\right)^k=C_{10}^k.x^{11k-40}\)

Để số hạng chứa \(x^{26}\) thì \(11k-40=26\)

\(\Leftrightarrow k=6\)

Vậy hệ số cần tìm là: \(C_{10}^6\)

Bình luận (2)
DH
27 tháng 5 2017 lúc 18:49

\(3x^2+2x-1=0\)

\(\Rightarrow3x^2+3x-x-1=0\)

\(\Rightarrow3x.\left(x+1\right)-\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right).\left(3x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;\dfrac{1}{3}\right\}\)

Chúc bạn học tốt nha!!!

Bình luận (0)
ND
27 tháng 5 2017 lúc 18:25

Em làm bài này không chắc lắm! Nếu sai thì em xin lỗi anh Hoàng nha! Chưa thấy ai làm em làm đó nha!!!

Bài làm:

\(3x^2+2x-1=0\\ < =>x^2+2x^2+2x+1-2=0\\ < =>\left(x^2+2x+1\right)+\left(2x^2-2\right)=0\\ < =>\left(x+1\right)^2+2\left(x-1\right)\left(x+1\right)=0\\ < =>\left(x+1\right)\left(x+1+2\left(x-1\right)\right)=0\\ < =>\left(x+1\right)\left(x+1+2x-2\right)=0\\ < =>\left(x+1\right)\left(3x-1\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (2)
TH
Xem chi tiết
TB
25 tháng 5 2017 lúc 14:37

=2

Bình luận (0)
MV
9 tháng 6 2017 lúc 19:55

Trần Lê Việt Hoàng

= 30

Bình luận (0)
NH
26 tháng 9 2017 lúc 22:04

=12 (nhân chia trc cộng từ sau)

Bình luận (0)
DC
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
NV
12 tháng 5 2017 lúc 21:11

+) Xét phương trình mặt cầu (C):

\(x^2+y^2+z^2-2x-4y-4z=7\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=16\)

(C) có tâm I(1;2;2) và có bán kính R=4

+) Xét mặt phẳng (P): \(2x+3y+6z-T=0\)

Điểm M là giao điểm của (C) và (P)!

+) Ta có:

\(IM=\dfrac{\left|2x_M+3y_M+6z_M-T\right|}{\sqrt{2^2+3^2+6^2}}=\dfrac{\left|20-T\right|}{7}\)

Mà: \(0\le IM\le R\Leftrightarrow0\le\dfrac{\left|20-T\right|}{7}\le4\)

Từ đây tìm ra được: \(maxT=48\Leftrightarrow IM=R=4\)

(T max khi và chỉ khi mặt cầu C tiếp xúc mặt phẳng P)

Chọn C

Bình luận (2)
HD
12 tháng 5 2017 lúc 19:00

.

Bình luận (0)
TC
Xem chi tiết