Tính giá trị biểu thức
D=\(\dfrac{cosa+sina}{cosa-sina}\) biết tan α =\(\dfrac{1}{2}\)
Chứng minh các hệ thức sau :
a) \(\dfrac{cosa}{1-sina}=\dfrac{1+sina}{cosa}\)
b) \(\dfrac{\left(sina+cosa\right)-\left(sina-cosa\right)^2}{sina.cosa}=4\)
a: \(\sin^2a+\cos^2a=1\)
\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)
hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)
b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)
\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)
Cho tana=\(\dfrac{1}{3}\)Tính\(\dfrac{cosa-sina}{cosa+sina}\)
Chứng minh rằng:\(\dfrac{1-tana}{1+tana}=\dfrac{cosa-sina}{cosa+sina}\)
a) Tính: cosA, sinA, biết tanA= \(\dfrac{3}{5}\)
b) Tính: sinA, tanA, biết cosA=\(\dfrac{1}{4}\)
MỌI NGƯỜI GIÚP EM VỚI Ạ. EM CẢM ƠN NHIỀU Ạ
a) Có: `1+tan^2a=1/(cos^2a)`
`<=> 1+(3/5)^2=1/(cos^2a)`
`=> cosa=\sqrt10/4`
`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`
b) Có: `sin^2a + cos^2a=1`
`<=> sin^2a + (1/4)^2=1`
`=> sina=\sqrt15/4`
`=> tana = (sina)/(cosa) = \sqrt15`
a) Giả sử tam giác ABC vuông tại B có \(tanA=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{BC}{AB}=\dfrac{3}{5}\Rightarrow BC=\dfrac{3}{5}AB\Rightarrow AC=\sqrt{AB^2+\dfrac{9}{25}AB^2}=\dfrac{\sqrt{34}}{5}AB\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{5}{\sqrt{34}}\Rightarrow cosA=\dfrac{5}{\sqrt{34}}\)
\(AC=\dfrac{\sqrt{34}}{5}AB\Rightarrow AC=\dfrac{\sqrt{34}}{5}.\dfrac{5}{3}BC=\dfrac{\sqrt{34}}{3}BC\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{\sqrt{34}}\)
\(\Rightarrow sinA=\dfrac{3}{\sqrt{34}}\)
b) cũng tương tự như câu a thôi,bạn tự tính nha
a. \(\dfrac{sina+sin3a+sin5a}{cosa+cos3a+cos5a}\)= tan3a
b. \(\dfrac{1+cosa}{1-cosa}tan^2\dfrac{a}{2}-cos^2a=sin^2a\)
giúp mk vs ạ
a.
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
b.
\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)
\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)
cho tan a=-2.tính A=\(\dfrac{cosa+sina}{cosa-sina}\)
\(A=\dfrac{cosa+sina}{cosa-sina}=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\left(-2\right)}{1-\left(-2\right)}=\dfrac{-1}{3}\)
tính tan \(a\), biết \(\dfrac{sina+cosa}{sina-cosa}\)= 3
\(\dfrac{sina+cosa}{sina-cosa}=3=>sina+cosa=3sina-3cosa\)
\(=>2sina=4cosa=>sina=2cosa\)
\(=>tana=\dfrac{sina}{cosa}=\dfrac{2cosa}{cosa}=2\)
Rút gọn: \(\dfrac{sina+cosa-1}{sina-cosa+1}\)
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
A=\(\dfrac{1-cosa}{sina}-\dfrac{sina}{1+cosa}\)
\(A=\dfrac{1-cosa}{sina}-\dfrac{sina}{1+cosa}=\dfrac{\left(1-cosa\right)\left(1+cosa\right)-sina.sina}{sina\left(1+cosa\right)}\)
\(A=\dfrac{1-cos^2a-sin^2a}{sina\left(1+cosa\right)}=\dfrac{sin^2a-sin^2a}{sina\left(1+cosa\right)}=0\)