3.tìm m để pt tanx(tanx-2)+cotx(cotx-2)=m
a. có nghiệm
b.có nghiệm thuộc (0;pi/4)
c1 có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm \(x\in\left[-\dfrac{\pi}{6},\dfrac{\pi}{4}\right]\), câu này tui tìm được 2 giá trị mà đáp án lại là 3 nên mong lung ..
c2 tìm số nghiệm của pt \(\dfrac{tan^2x-tanx+cot^2x-cotx-2}{sin2x-1}=0\) thuộc khoảng ( pi, 3pi)
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
Miền \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là cung tròn CAB
Chiếu cung tròn lên trục cos (trục ngang) được đoạn màu đỏ, với O có hoành độ bằng 0, A có hoành độ bằng 1
Do đó miền giá trị của cos trên \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là \(\left[0;1\right]\) hay đoạn OA
phương trình tan^x+cot^x-3(tanx+cotx)-2=0 có bao nhiêu nghiệm thuộc(0,pi)
tìm nghiệm của pt
\(tanx+\sqrt{3}cotx-\sqrt{3}-1=0\)
\(DKXD:\left\{{}\begin{matrix}\sin x\ne0\\\cos x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne\pi+k\pi\\x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\tan x+\frac{\sqrt{3}}{\tan x}-\left(\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\tan^2x-\left(\sqrt{3}+1\right)\tan x+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\tan x=1\\\tan x=\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\) (t/m)
1.Giải các pt sau
a) tan2x + cotx = 8cos2x
b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )
c) 5 sinx - 2 = 3(1 - sinx)tan2x
2.Tìm tham số m để pt có nghiệm
a) (m + 1)sin2x - sin2x + cos2x = 0
b) 2sin2x + msin2x = 2m
c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0
ĐKXĐ: ...
a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)
\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)
\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)
\(\Leftrightarrow cosx=2sin4x.cosx\)
\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)
\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)
\(\Leftrightarrow cos2x+2sin^22x=1\)
\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)
\(\Leftrightarrow-2cos^22x+cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
1c/
\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)
\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)
\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)
\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)
\(\Leftrightarrow2sin^2x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 2:
a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow4m\le4\Rightarrow m\le1\)
Bài 2:
b/ \(\Leftrightarrow1-cos2x+msin2x=2m\)
\(\Leftrightarrow msin2x-cos2x=2m-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(m^2+1\ge\left(2m-1\right)^2\)
\(\Leftrightarrow3m^2-4m\le0\)
\(\Rightarrow0\le m\le\frac{4}{3}\)
c/ Với \(cosx=0\) không phải là nghiệm
Với \(cosx\ne0\), chia 2 vế cho \(cos^2x\) ta được:
\(tan^2x-4tanx+m-2=0\)
Đặt \(tanx=t\Rightarrow t\in\left[0;1\right]\)
Phương trình trở thành: \(t^2-4t+m-2=0\)
\(\Leftrightarrow f\left(t\right)=t^2-4t-2=-m\)
Dựa vào đồ thị hàm \(f\left(t\right)=t^2-4t-2\), để \(y=-m\) cắt \(y=f\left(t\right)\) với \(t\in\left[0;1\right]\) \(\Rightarrow-5\le-m\le-2\)
\(\Rightarrow2\le m\le5\)
Tập nghiệm của phương trình tanx + cotx -2 = 0 là:
A. {-π/4+kπ,k∈Z}
B. {π/4+kπ,k∈Z}
C. {±π/4+k2π,k∈Z}
D. ∅
Đáp án đúng: B
Giải thích
ĐKXĐ: sin x ≠ 0 cos x ≠ 0 ⇔ x ≠ k π 2
tan x + cot x − 2 = 0
⇔
tan
x
+
1
tan
x
−
2
=
0
⇔
tan
2
x
−
2
tan
x
+
1
=
0
⇔ tan x = 1
⇔ x = π 4 + k π (thỏa mãn ĐKXĐ)
có bao nhiêu giá trị nguyên của m nhỏ hơn 2019 để pt \(\frac{3}{cos^2x}+3cot^2x+tanx+cotx=m\) có nghiệm
\(3\left(1+tan^2x\right)+3cot^2x+tanx+cotx=m\)
\(\Leftrightarrow3\left(tan^2x+cot^2x+2\right)+tanx+cotx-3=m\)
\(\Leftrightarrow3\left(tanx+cotx\right)^2+tanx+cotx-3=m\)
Đặt \(tanx+cotx=t\Rightarrow\left|t\right|\ge2\)
\(\Rightarrow3t^2+t-3=m\)
Xét \(f\left(t\right)=3t^2+t-3\) trên \(D=(-\infty;-2]\cup[2;+\infty)\)
\(-\frac{b}{2a}=-\frac{1}{6}\notin D\) ; \(f\left(-2\right)=7\) ; \(f\left(2\right)=11\)
\(\Rightarrow f\left(t\right)\ge7\Rightarrow m\ge7\)
Có \(2018-7+1=2012\) giá trị nguyên của m thỏa mãn
1. cho 180 độ < x < 250 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
2. cho \(\dfrac{3\pi}{4}\) <x< \(\dfrac{3\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
3.
cho 2\(\pi\) < x <\(\dfrac{5\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
4.
cho 630 độ < x <720 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
Cho tanx×cotx=m,với m>2.tính |tanx-cotx|
Chắc bạn ghi sai đề, là \(tanx+cotx=m\) mới đúng (vì \(tanx.cotx=1\))
\(\Rightarrow\left(tanx+cotx\right)^2=m^2\)
\(\Leftrightarrow\left(tanx-cotx\right)^2+4tanx.cotx=m^2\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=m^2-4\)
\(\Rightarrow\left|tanx-cotx\right|=\sqrt{m^2-4}\)
Nghiệm của phương trình tanx + cotx = - 2 là