Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NT

1.Giải các pt sau

a) tan2x + cotx = 8cos2x

b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )

c) 5 sinx - 2 = 3(1 - sinx)tan2x

2.Tìm tham số m để pt có nghiệm

a) (m + 1)sin2x - sin2x + cos2x = 0

b) 2sin2x + msin2x = 2m

c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0

NL
7 tháng 11 2019 lúc 6:31

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
7 tháng 11 2019 lúc 6:38

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
7 tháng 11 2019 lúc 6:45

Bài 2:

b/ \(\Leftrightarrow1-cos2x+msin2x=2m\)

\(\Leftrightarrow msin2x-cos2x=2m-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(m^2+1\ge\left(2m-1\right)^2\)

\(\Leftrightarrow3m^2-4m\le0\)

\(\Rightarrow0\le m\le\frac{4}{3}\)

c/ Với \(cosx=0\) không phải là nghiệm

Với \(cosx\ne0\), chia 2 vế cho \(cos^2x\) ta được:

\(tan^2x-4tanx+m-2=0\)

Đặt \(tanx=t\Rightarrow t\in\left[0;1\right]\)

Phương trình trở thành: \(t^2-4t+m-2=0\)

\(\Leftrightarrow f\left(t\right)=t^2-4t-2=-m\)

Dựa vào đồ thị hàm \(f\left(t\right)=t^2-4t-2\), để \(y=-m\) cắt \(y=f\left(t\right)\) với \(t\in\left[0;1\right]\) \(\Rightarrow-5\le-m\le-2\)

\(\Rightarrow2\le m\le5\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MH
Xem chi tiết
JE
Xem chi tiết
DV
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết