Những câu hỏi liên quan
PB
Xem chi tiết
CT
1 tháng 7 2019 lúc 7:01

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

Bình luận (0)
VT
Xem chi tiết
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
NT
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

Bình luận (0)
MG
Xem chi tiết
NM
17 tháng 9 2021 lúc 21:19

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
NL
15 tháng 7 2021 lúc 11:00

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=12\left(cm\right)\)

Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=3\sqrt[]{3}\left(cm\right)\)

Bình luận (0)
NT
15 tháng 7 2021 lúc 14:16

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{6^2}{3}=12\left(cm\right)\)

Ta có:BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=12-3=9(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=3\cdot9=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=12^2-3^2=135\)

hay \(AC=3\sqrt{15}\left(cm\right)\)

Bình luận (0)
DH
Xem chi tiết
CN
Xem chi tiết
PG
15 tháng 7 2021 lúc 10:41

Hình tự vẽ nha

a. Độ dài cạnh BC:    \(BC=\dfrac{AB^2}{BH}\) \(=\dfrac{6^2}{3}\) \(=12\) \(\left(cm\right)\)

Ta có:    \(BH+HC=BC\)

           \(3\)    \(+\) \(HC\) \(=\) \(12\)

     ⇒                 \(HC=9\)  \(\left(cm\right)\)

Độ dài AH:   \(AH^2=BH\times HC\) 

              ⇒    \(AH^2\)\(=\)    \(3\)  \(\times\) \(9\)

              ⇒     \(AH^2\)\(=\)    \(27\)

               ⇒     \(AH\) \(=\)     \(3\sqrt{3}\)

Vậy \(AH\) \(=\)  \(3\sqrt{3}\)   \(;\)    \(HC=9\) \(cm\)    \(;\)      \(BC=12\) \(cm\)

Bình luận (0)
AT
15 tháng 7 2021 lúc 10:43

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=3.BC\Rightarrow BC=12\left(cm\right)\)

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow AC^2=BC^2-AB^2=12^2-6^2=108\Rightarrow AC=6\sqrt{3}\left(cm\right)\)

Ta có: \(CH=BC-BC=12-3=9\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.6\sqrt{3}}{12}=3\sqrt{3}\left(cm\right)\)

 

Bình luận (0)
NT
15 tháng 7 2021 lúc 13:53

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=6^2-3^2=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=\left(3\sqrt{3}\right)^2+9^2=108\)

hay \(AC=6\sqrt{3}\left(cm\right)\)

Bình luận (0)
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)