Bài 5: Ứng dụng thực tế các tỉ số lượng giác của góc nhọn

DN

cho tam giác ABC vuông tại A, đường cao AH biết AB=6cm, BH=3cm. Tính AH,BC,AC

NL
15 tháng 7 2021 lúc 11:00

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=12\left(cm\right)\)

Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=3\sqrt[]{3}\left(cm\right)\)

Bình luận (0)
NT
15 tháng 7 2021 lúc 14:16

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{6^2}{3}=12\left(cm\right)\)

Ta có:BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=12-3=9(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=3\cdot9=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=12^2-3^2=135\)

hay \(AC=3\sqrt{15}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết