tìm x
câu 1: 10/3 *x -1/2 =1/10
câu 2 : 1 / 3 * x + 1/3 *x=1/8
câu 3 : [ 3 x -1 ] [ 1/2 x -2/5 ] = 0
Ai giúp em bài này với ạ
Câu 1
A) |x-3| =5
B) |2x+3|=2|4-x|
C) |x^2-3x+1| =3-x
Câu 2 Tìm điều kiện của m để phương trình (X+3) (x^2-2x+m-1)=0 có ba nghiệm phân biệt
Câu 1:Ta có:
a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b) \(\left|2x+3\right|=2.\left|4-x\right|\)
+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)
Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)
Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)
Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)
+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)
Vậy...
c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)
+)Xét \(x^{^2}-3x+1\ge0\)
\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)
+)Xét \(x^{^2}-3x+1\le0\)
\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)
\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)
Vậy...
Câu 2:
Ta có:
Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)
\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)
Ta có: \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)
Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)
Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).
Do vai trò của \(x_1\) và \(x_2\) là như nhau nên \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)
Câu 1: Tìm GTNN của E = x- \(\sqrt{x-2015}\)
Câu 2: tìm GTLN của C= \(\sqrt{x}\)-x
Câu 3 :
Câu 4:
Câu 5
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?
A/ 0x + 2 = 2 B/ 5x + 2y = 0 C/ 2x/3 + 1 = 0 D/2/3x + 4=0
Câu 2: Phương trình x = 1 tương đương với phương trình nào sau đây?
A/ x2 = 1 B/ x(x – 1) = 0 C/ x2 + x – 2 = 0 D/ 2x – 1= x
Câu 3: Tập nghiệm phương trình x – 3 = 0 được viết như thế nào?
A. S = {0} B. S ={3} C. S = {3; 0} D. S = {–3}
Câu 4. Điều kiện xác định của phương trình x/x-3 - (x-1)/x=1: là kết luận nào sau đây?
A. x≠0 B. x≠3 C. x≠0; x≠3 D. x≠0; x≠–3
Câu 5. Tập nghiệm S = { 1,2} là của phương trình nào sau đây?
A. 5x – 6 = 0 B. 6x – 5 = 0 C. (x – 1)(x – 2) = 0 D. 1x = 2
Câu 6: Số nào sau đây nghiệm đúng phương trình 1= 2x + 3 ?
A/ x = 1 B/ x = –1 C/ x = –2 D/ x = 0
Hình 1 Hình 2 Hình 3
Câu 7. Hình 1, biết AD là tia phân giác của . Tỷ số x: y bằng tỉ số nào sau đây?
A. 5 : 2 B. 5 : 4 C. 2 : 5 D. 4 : 5
Câu 8. Hình 2, ký hiệu cặp tam giác nào sau đây đồng dạng với nhau là đúng?
a. ∆ABC∼ ∆ACB b. ∆ABC∼ ∆MPN c. ∆ABC∼ ∆MNP d. Cả a, b, c đều đúng.
Câu 9: Hình 3, nếu EF // BC, tỉ lệ thức nào đúng theo định lí Ta - lét?
A/AE/EB = CF/CA B/EA/EB = AF/FC C/AE/EB = AF/AC D/AE/AB = AC/AF
Câu 10: Hình 3, nếu EF // BC, theo hệ quả của định lí Ta-lét ta có tỉ lệ thức nào?
A/AE/BA=AF/AC=EF/BC .B/AE/AB=AF/AC .C/AE/AB=AF/FC=EF/BC .D/AE/EB=AF/FC
Câu 11: Hình 3, tỉ lệ thức nào sau đây đúng sẽ cho ta kết luận EF// BC?
A/AE/AB=EF/BC .B/AE/BE=AF/FC .C/AE/EB=AF/AC .D/FE/CB=AF/FC
Câu 12: Hình 3, nếu EF // BC, ta có cặp tam giác nào đồng dạng sau đây là đúng?
a. ∆ABC∼ ∆AFE b. ∆ABC∼ ∆EAF c. ∆BAC∼ ∆EAF d. Cả a, b, c đều đúng.
Câu 13. DABC ∼DDEF biết góc A = 500 , góc E= 700, AB = 4cm, ta kết luận được gì sau đây?
A. góc B = 700 B. góc B = 500 C. BC = 4cm D. BC = 4cm
Câu 14. Diện tích một hình chữ nhật thay đổi thế nào nếu tăng chiều rộng lên gấp đôi và giảm chiều dài đi ba lần?
A. Tăng 2 lần B. Giảm 1,5 lần C. Tăng 1,5 lần D. Giảm 1,5 lần
Câu 15. Cạnh hình thoi dài 5cm, một đường chéo dài 6cm thì có diện tích bao nhiêu?
A. S = 36cm2 B. S = 30cm2 C. S = 25cm2 D. S = 24cm2
note*:∼ là đồng dạng
các cậu giúp mình với mai mình nộp bài r
Bài 1: thực hiện phép tính
a)1/1×2+1/2×3+1/3×4+...+1/2019×2020
b)1/1×3+1/3×5+1/5×7+...+1/2017×2019
c)3^0+3^1+3^2+...+3^100
d)1/2+1/2^2+1/2^3+...+1/2^2019
Bài2:tìm x
a)|x-2|+|x2 -4=0
b)x+1/2.x-25%.x=10
c)2+4+6+8+...+2x=210
d)1/5×8+1/8×11+1/11×14+...+1/x(x+3)=101/1504
Chú ý: dấu chấm ở câu b)bài 2 là dấu nhân
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
\(C=3^0+3^1+3^2+...+3^{100}\)
\(3C=3^1+3^2+3^3+...+3^{101}\)
\(3C-C=\left(3^1+3^2+3^3+...+3^{101}\right)-\left(1+3^1+3^2+...+3^{100}\right)\)
\(2C=3^{101}-1\)
\(C=\frac{3^{101}-1}{2}\)
câu 1 : â, (n+10).(n+15) chia hết cho 2 n thuộc N
b, n^3 +11n chia hết cho 6 với n thuộc N
c, n. (n+1).(2n+1) chia hết cho 6 với n thuộc N
câu 2 :tìm x ,biết
a, 1^3+1^3+3^3+......+10^3 = (x+1)^2
b,1+3+5+.....+99=(x-2)^2
c,5^x . 5^x+1 . 5^x+2<100.....0<18 số 0> chia hết cho 2 ^18
d,(x+1)+(x+2)+.....+(x+100)=570
câu 3: biết 1^2+2^2+.....+10^2=315
tính nhanh S=10^2+200^2+......+1000^2
Tìm x:
a) 2 3/4 - x=3/4
b) x:5/6=-3/5
c)1 1/3 +2/3:x=1
d) x-1/9=8/3
e) 1/2 x + 650%x-x= -6
g) 2(x - 1/2) + 3(-1+x/3)=x(2/x - 1) (x khác 0)
h) x-2/20= -5/2-x
i) (x/2-1)3 + 2=-11/8
k) (x/3 +1/2) (75% - 1 1/2x)=0
GIÚP MÌNH VỚI Ạ. CẢM ƠN MỌI NGƯỜI!
a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)
b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)
c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)
\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)
\(\Rightarrow x=-2\)
d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)
\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{25}{9}\)
e) \(\dfrac{1}{2}x+650\%x-x=-6\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)
\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)
\(\Rightarrow6x=-6\)
\(\Rightarrow x=\dfrac{-6}{6}=-1\)
g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)
\(\Rightarrow2x-1-3+x=2-x\)
\(\Rightarrow3x-4=2-x\)
\(\Rightarrow3x+x=2+4\)
\(\Rightarrow4x=6\)
\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)
h) \(x-\dfrac{2}{20}=-\dfrac{5}{2}-x\)
\(\Rightarrow x+x=-\dfrac{5}{2}+\dfrac{2}{20}\)
\(\Rightarrow2x=-\dfrac{12}{5}\)
\(\Rightarrow x=-\dfrac{12}{5}:2=-\dfrac{6}{5}\)
i) \(\left(\dfrac{x}{2}-1\right)^3+2=-\dfrac{11}{8}\)
\(\Rightarrow\left(\dfrac{x}{2}-1\right)^3=-\dfrac{11}{8}-2\)
\(\Rightarrow\dfrac{x}{2}-1=\sqrt[3]{-\dfrac{27}{8}}\)
\(\Rightarrow\dfrac{x}{2}-1=-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{x}{2}=-\dfrac{3}{2}+1\)
\(\Rightarrow x=-\dfrac{1}{2}.2=-1\)
k) \(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\\dfrac{3}{4}-1\dfrac{1}{2}x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\\dfrac{3}{2}x=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}.3=-\dfrac{3}{2}\\x=\dfrac{3}{4}:\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Câu 1: Tính giới hạn: lim (x\(\rightarrow\)-1)\(\dfrac{2x^2-x-3}{x^2-1}\)
Câu 2: Tính đạo hàm của hàm số sau:
a. y=2x3-cosx-\(\sqrt{x}\)+2020 b. y=(x2-5)10
Câu 3:Viết phương trình tiếp tuyến của đồ thị (C): y=-x2-20, biết tiếp tuyến có hệ số góc k=4.
Câu 4 Cho hàm số:y=x.sinx. Chứng minh: y'+yn-x.(cosx-sinx)=sinx+2cos
1.
\(\lim\limits_{x\rightarrow-1}\dfrac{2x^2-x-3}{x^2-1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x-3\right)}{\left(x+1\right)\left(x-1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{2x-3}{x-1}=\dfrac{5}{2}\)
2.
a. \(y'=6x^2-sinx-\dfrac{1}{2\sqrt{x}}\)
b. \(y'=10\left(x^2-5\right)^9.\left(x^2-5\right)'=20x\left(x^2-5\right)^9\)
3.
\(y'=-2x\)
\(k=4\Rightarrow-2x=4\Rightarrow x=-2\Rightarrow y\left(-2\right)=-24\)
Phương trình tiếp tuyến:
\(y=4\left(x+2\right)-24\Leftrightarrow y=4x-16\)
Tìm x biết: a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\) b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\) d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}.\dfrac{10}{6}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)