Q=-2xy3z5. x+(1/2x2yz3).6y2z2-(2xyz)2.4yz3
Cho x,y,z thỏa mãn \(x^2+y^2+z^2+2xyz=1\)
Tìm GTLN của \(P=xy+yz+xz-2xyz\)
Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
= 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1
cho x, y, z>= √2. chứng minh rằng 1/y*5+z*5+2xyz + 1/z*5+x*5+2xyz + 1/x*5+y*5+2xyz <= 1/2xyz
Ta có: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Leftrightarrow a^5+b^5+2abc\ge a^2b^2\left(a+b\right)+2abc\)
\(\ge ab\left[ab\left(a+b\right)+2c\right]\ge ab\left[2\left(a+b\right)+2c\right]=2ab\left(a+b+c\right)\) (áp dụng với \(a,b,c\ge\sqrt{2}\))
\(\Rightarrow\frac{1}{a^5+b^5+2abc}\le\frac{1}{2ab\left(a+b+c\right)}\)
Áp dụng vào bài toán ta được
\(P\le\frac{1}{2xy\left(x+y+z\right)}+\frac{1}{2yz\left(x+y+z\right)}+\frac{1}{2zx\left(x+y+z\right)}\)
\(=\frac{x+y+z}{2xyz\left(x+y+z\right)}=\frac{1}{2xyz}\)
Cho x, y, z là các số thực không âm thỏa mãn điều kiện: \(x^2+y^2+z^2+2xyz=1\)
Tìm Max \(P=xy+yz+xz-2xyz\)
\(x^2+y^2+z^2+2xyz=1\)
\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)
\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)
\(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
a) (2x2)2 .(-3y)3.(-5xz)3
b) 2y3y2. xy3 . x2 .y2
c) (-2x2yz3)2 ( -3x3 y2 z)3
tìm bậc của các đa thức sau
a: \(\left(2x^2\right)^2\cdot\left(-3y\right)^3\cdot\left(-5xz\right)^3\)
\(=4x^4\cdot\left(-27\right)y^3\cdot\left(-125\right)x^3z^3\)
\(=13500x^7y^3z^3\)
Bậc là 13
b: \(2x^3y^2\cdot xy^3\cdot x^2\cdot y^2\)
\(=2x^6y^7\)
Bậc là 13
Cho x, y, z là các số thực không âm thỏa mãn điều kiện: \(x^2+y^2+z^2+2xyz\).
Tìm Max \(P=xy+yz+xz-2xyz.\)
Chắc đk là: \(x^2+y^2+z^2=2xyz\)
Có:\(x^2+y^2\ge2xy\) ,\(y^2+z^2\ge2yz\), \(z^2+x^2\ge2xz\)
=> \(2\left(x^2+y^2+z^2\right)\ge2\left(yz+xz+xy\right)\)
<=> \(x^2+y^2+z^2\ge xz+xy+yz\)
=> \(2xyz\ge xz+xy+yz\)
<=> \(0\ge xy+yz+xz-2xyz\) <=> \(0\ge P\)
Dấu "="xảy ra <=> x=y=z=0 hoặc\(x=y=z=\frac{3}{2}\)
chứng minh rằng:
\(\frac{1}{x^2+yz}+\frac{1}{y^2+zx}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
Điều kiện là x;y;z dương
\(VT=\frac{1}{x^2+yz}+\frac{1}{y^2+zx}+\frac{1}{z^2+xy}\le\frac{1}{2\sqrt{xy.xz}}+\frac{1}{2\sqrt{xy.yz}}+\frac{1}{2\sqrt{zx.yz}}\)
\(VT\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+\frac{1}{yz}\right)=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{2xyz}\)
Dấu "=" xảy ra khi \(x=y=z\)
cho \(x,y,z\ge0;x+y+z=1\)
chứng minh: \(0\le xy+yz+xz=2xyz\le\dfrac{7}{27}\)
Lời giải:
Vế đầu tiên:
Áp dụng BĐT AM-GM ta có:
\(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.xz}=9xyz\)
\(9xyz\geq 2xyz\) với mọi $x,y,z\geq 0$
Do đó: \(xy+yz+xz\geq 2xyz\Rightarrow xy+yz+xz-2xyz\geq 0\)
Ta có đpcm.
Vế thứ hai
Áp dụng BĐT Schur bậc 3 ta có (hoặc bạn có thể cm BĐT quen thuộc này bằng AM-GM ngược dấu)
\(xyz\geq (x+y-z)(y+z-x)(z+x-y)\)
\(\Leftrightarrow xyz\geq (1-2z)(1-2x)(1-2y)\)
\(\Leftrightarrow xyz\geq 4(xy+yz+xz)-2(x+y+z)+1-8xyz=4(xy+yz+xz)-1-8xyz\)
\(\Rightarrow 9xyz\geq 4(xy+yz+xz)-1\Rightarrow xyz\geq \frac{4}{9}(xy+yz+xz)-\frac{1}{9}\)
Do đó:
\(xy+yz+xz-2xyz\leq xy+yz+xz-2\left(\frac{4}{9}(xy+yz+xz)-\frac{1}{9}\right)=\frac{xy+yz+xz+2}{9}(*)\)
Mà theo hệ quả quen thuộc của BĐT AM-GM:
\(1=(x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{xy+yz+xz+2}{9}\leq \frac{\frac{1}{3}+2}{9}=\frac{7}{27}(**)\)
Từ \((*);(**)\Rightarrow xy+yz+xz-2xyz\leq \frac{7}{27}\) (đpcm)
\(0< x,y,z< 1.xy+xz+yz+2xyz=1\) 1
Tìm Max P =\(\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\)
+) \(P=\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\)
\(\le\frac{1-x^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-y^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-z^2+\frac{3}{4}}{\sqrt{3}}\)
\(=\frac{\frac{21}{4}-x^2-y^2-z^2}{\sqrt{3}}\)
+) \(1=xy+yz+xz+2xyz\le\frac{\left(x+y+z\right)^2}{3}+\frac{2\left(x+y+z\right)^3}{27}\)
Đặt \(a=x+y+z\), ta được \(2a^3+9a^2-27\ge0\Leftrightarrow\left(2a-3\right)\left(a+3\right)^2\ge0\Rightarrow a\ge\frac{3}{2}\)
+) \(A=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)
+) \(P\ge\frac{\frac{21}{4}-A}{\sqrt{3}}=\frac{\frac{21}{4}-\frac{3}{4}}{\sqrt{3}}=\frac{9}{2\sqrt{3}}=\frac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi x = y = z = 1/2
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\) Chứng minh \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow xy+yz+zx-2xyz=xy\left(1-z\right)+yz\left(1-x\right)+zx\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Mặt khác do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\Rightarrow1=x+y+z\ge3x\Rightarrow0\le x\le\frac{1}{3}\)
\(P=x\left(y+z\right)+yz\left(1-2x\right)=x\left(1-x\right)+yz\left(1-2x\right)\)
\(P\le x\left(1-x\right)+\frac{1}{4}\left(y+z\right)^2\left(1-2x\right)=x\left(1-x\right)+\frac{1}{4}\left(1-x\right)^2\left(1-2x\right)\)
\(P\le\frac{-2x^3+x^2+1}{4}=\frac{-2x^3+x^2+1}{4}-\frac{7}{27}+\frac{7}{27}\)
\(P\le-\frac{\left(1-3x\right)^2\left(6x+1\right)}{108}+\frac{7}{27}\le\frac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
thuc hien phep tinh:
a,2xyz+4xyz-\(\dfrac{1}{2}\)xyz
b,\(\dfrac{x^2}{2}\)+\(\dfrac{x^2}{3}\)+\(\dfrac{x^2}{4}\)