Chắc đk là: \(x^2+y^2+z^2=2xyz\)
Có:\(x^2+y^2\ge2xy\) ,\(y^2+z^2\ge2yz\), \(z^2+x^2\ge2xz\)
=> \(2\left(x^2+y^2+z^2\right)\ge2\left(yz+xz+xy\right)\)
<=> \(x^2+y^2+z^2\ge xz+xy+yz\)
=> \(2xyz\ge xz+xy+yz\)
<=> \(0\ge xy+yz+xz-2xyz\) <=> \(0\ge P\)
Dấu "="xảy ra <=> x=y=z=0 hoặc\(x=y=z=\frac{3}{2}\)