Tam giác ABC có cạnh \(a=2\sqrt{3};b=2;\widehat{C}=30^0\)
a) Tính cạnh c, góc A và diện tích S của tam giác ABC
b) Tính chiều cao \(h_a\) và đường trung tuyến \(m_a\) của tam giác ABC
Cho tam giác ABC đều có A(2; 0) phương trình BC: \(\sqrt{3}x-3y+6=0\). Viết phương trình các cạnh còn lại của tam giác ABC.
Đường thẳng BC nhận \(\overrightarrow{n}=\left(\sqrt{3};-3\right)\) là 1 vtpt
Gọi \(\overrightarrow{n_1}=\left(a;b\right)\) là 1 vtpt của AB (với a;b không đồng thời bằng 0)
Do tam giác ABC đều \(\Rightarrow\widehat{\left(n_1;\overrightarrow{n}\right)}=60^0\)
\(\Rightarrow cos\left(\overrightarrow{n_1};\overrightarrow{n}\right)=\dfrac{\left|a\sqrt{3}-3b\right|}{\sqrt{a^2+b^2}.\sqrt{3+9}}=\dfrac{1}{2}\)
\(\Leftrightarrow\left(a-\sqrt{3}b\right)^2=a^2+b^2\)
\(\Leftrightarrow a^2+3b^2-2\sqrt{3}ab=a^2+b^2\)
\(\Leftrightarrow b^2=\sqrt{3}ab\Rightarrow\left[{}\begin{matrix}b=0\\b=\sqrt{3}a\end{matrix}\right.\)
\(\Rightarrow\) Phương trình 2 cạnh còn lại có dạng:
\(\left\{{}\begin{matrix}a\left(x-2\right)+0\left(y-0\right)=0\\a\left(x-2\right)+\sqrt{3}a\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+\sqrt{3}y-2=0\end{matrix}\right.\)
Cho tam giác ABC cạnh a, có trung tuyến BM. Độ dài của \(\overrightarrow{BM}\) là:
A. a\(\sqrt{3}\)
B.\(\dfrac{a\sqrt{2}}{3}\)
C.\(\dfrac{a\sqrt{3}}{2}\)
D.\(\dfrac{a\sqrt{3}}{3}\)
Tam giác ABC là tam giác đều?
Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)
Cho tam giác ABC có a,b,c là độ dài 3 cạnh của tam giác, trong đó a lớn nhất. Chứng minh rằng tam giác ABC vuông khi và chỉ khi \(\left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+c}+\sqrt{a-c}\right)=\left(a+b+c\right)\sqrt{2}\)
bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)
Cho tam giác ABC có ba cạnh a,b,c và có chu vi 2p, diện tích S thỏa \(\frac{\sqrt{3}}{36}\)(a+b+c)^2. Hỏi tam giác ABC là tam giác gì ?
Cho tam giác ABC có độ dài 3 cạnh là a, b, c. CMR: Nếu 2 đường phân giác AD và BE cắt nhau tại O thỏa mãn\(\frac{OA}{OD}=\sqrt{3},\frac{OB}{OE}=\frac{1}{\sqrt{3}-1}\)thì tam giác ABC vuông
Cho tam giác ABC vuông tại A có cạnh BC bằng\(2\sqrt{2}\)và đường cao AH bằng\(\sqrt{2}\). Chứng minh rằng tam giác ABC là tam giác vuông cân
Bài 1: Giải phương trình sau: \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Bài 2: Cho tam giác ABC vuông tại A. G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC=a, và góc giữa hai véctơ \(\overrightarrow{GB}\) và \(\overrightarrow{GD}\) nhỏ nhất.
1.
\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)
\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)
\(\Leftrightarrow a=\sqrt{3}b\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
\(\Leftrightarrow2x^2-4x+2=0\)
\(\Leftrightarrow x=1\)
Bài 2:
Đặt \(AB=x>0\)
\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)
\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)
\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)
Ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)
\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)
\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)
\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)
\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)
Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)
Cho tam giác ABC vuông ở A, tanB = \(\sqrt{2}\) .
a) Tính tỉ số lượng giác của góc C.
b) Kẻ AH vuông góc với BC, biết AH = 2\(\sqrt{3}\) cm . Hãy tính các cạnh của tam giác ABC.
giúp e vs ạ
\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)
\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)
Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)
\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)
\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)
b.
Trong tam giác vuông ACH:
\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)
Trong tam giác vuông ABC:
\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)
Áp dụng Pitago:
\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)
a: Xét ΔABC vuông tại A có
\(\tan\widehat{B}=\sqrt{2}\)
\(\Leftrightarrow AC=AB\cdot\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3\cdot AB^2\)
hay \(BC=AB\cdot\sqrt{3}\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\)
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
\(\cot\widehat{C}=\sqrt{2}\)