Bài 2: Tỉ số lượng giác của góc nhọn

NP

Cho tam giác ABC vuông ở A, tanB =  \(\sqrt{2}\) . 
a) Tính tỉ số lượng giác của góc C. 
b) Kẻ AH vuông góc với BC, biết AH =  2\(\sqrt{3}\) cm . Hãy tính các cạnh của tam giác ABC. 

giúp e vs ạ

NL
25 tháng 8 2021 lúc 20:58

\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)

\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)

Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)

\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)

\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)

b.

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)

Bình luận (0)
NL
25 tháng 8 2021 lúc 20:58

undefined

Bình luận (0)
NT
25 tháng 8 2021 lúc 21:50

a: Xét ΔABC vuông tại A có 

\(\tan\widehat{B}=\sqrt{2}\)

\(\Leftrightarrow AC=AB\cdot\sqrt{2}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{3}\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\cot\widehat{C}=\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SM
Xem chi tiết
HN
Xem chi tiết
TQ
Xem chi tiết
2A
Xem chi tiết
GB
Xem chi tiết
ND
Xem chi tiết