Ôn tập chương III

H24

Bài 1: Giải phương trình sau: \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)

Bài 2: Cho tam giác ABC vuông tại A. G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC=a, và góc giữa hai véctơ \(\overrightarrow{GB}\) và \(\overrightarrow{GD}\) nhỏ nhất.

NL
15 tháng 12 2020 lúc 22:17

D là điểm nào bạn?

Bình luận (1)
NL
16 tháng 12 2020 lúc 10:28

1.

\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)

\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)

\(\Leftrightarrow a=\sqrt{3}b\)

\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)

\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)

\(\Leftrightarrow2x^2-4x+2=0\)

\(\Leftrightarrow x=1\)

Bình luận (0)
NL
16 tháng 12 2020 lúc 10:44

Bài 2:

Đặt \(AB=x>0\) 

\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)

\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)

\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)

Ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)

\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)

\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)

\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)

\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)

Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
ND
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LB
Xem chi tiết
HT
Xem chi tiết