Những câu hỏi liên quan
DL
Xem chi tiết
NT
28 tháng 9 2021 lúc 20:42

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:22

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:26

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

Bình luận (0)
LL
Xem chi tiết
NT
2 tháng 10 2021 lúc 22:22

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

Bình luận (0)
TT
Xem chi tiết
TT
21 tháng 4 2021 lúc 21:37

giúp mình câu d thui mn ơi :333, mình cám ơn mn ạ

 

Bình luận (0)
NT
21 tháng 4 2021 lúc 21:40

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

Bình luận (0)
NT
21 tháng 4 2021 lúc 21:41

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Bình luận (0)
DD
Xem chi tiết
NT
14 tháng 2 2022 lúc 15:49

bạn đăng từng bài nhé

Bình luận (0)
NT
14 tháng 2 2022 lúc 19:43

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

Bình luận (0)
TH
Xem chi tiết
HC
Xem chi tiết
DL
8 tháng 6 2021 lúc 14:14

a, Xét ΔABC và ΔHBA có:

∠BAC chung, ∠BHA=∠BAC (=90o)

=> ΔABC ∼ ΔHBA (g.g)

b, Áp dụng đ/l Pitago vào △ABC ta có:

BC2=AB2+AC2 => BC=√(62+82)=10 (cm)

Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC

=> 6.8=AH.10 => AH=4,8 (cm)

c, Xét △HAB và △HCA có:

∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)

=> △HAB ∼ △HCA (g.g)

=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)

d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)

=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)

=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)

 

Bình luận (0)
HV
Xem chi tiết
NT
27 tháng 6 2023 lúc 15:25

loading...

Bình luận (0)
TN
Xem chi tiết
NM
22 tháng 6 2023 lúc 9:56

a/

Xét tg vuông ABH

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+3^2}=3\sqrt{5}cm\)

\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{6^2}{3}=12cm\)

Xét tg vuông ACH

\(AC=\sqrt{AH^2+CH^2}=\sqrt{6^2+12^2}=6\sqrt{5}cm\)

b/

\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}\)

CH=BC-BH

\(AH^2=BH.CH\)

Xét tg vuông ACH

\(AC=\sqrt{AH^2+CH^2}\)

Bạn tự thay số và tính toán nhé

Bình luận (0)
NN
Xem chi tiết
H24
24 tháng 3 2021 lúc 20:02

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

Bình luận (0)