Những câu hỏi liên quan
H24
Xem chi tiết
HP
15 tháng 4 2022 lúc 21:37

undefined

Bình luận (2)
TN
15 tháng 4 2022 lúc 21:43

\(f'\left(x\right)=-4x^3\left(f\left(x\right)\right)^2\Leftrightarrow-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}=4x^3\)

Lấy nguyên hàm hai vế

\(\int-\dfrac{f'\left(x\right)}{\left(f\left(x\right)\right)^2}dx=\int4x^3dx\)

\(\Leftrightarrow\dfrac{1}{f\left(x\right)}=x^4+c\)

Thay x=0 vào tìm được c=1 \(\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)

\(I=\int\limits^1_0\dfrac{x^3}{x^4+1}dx=\dfrac{1}{4}\int\limits^1_0\dfrac{\left(x^4+1\right)'}{x^4+1}dx=\dfrac{ln2}{4}\)

Chọn D

 

Bình luận (0)
NT
Xem chi tiết
SN
11 tháng 11 2023 lúc 1:09

48 D

50 loading...  

loading...    

Bình luận (2)
TC
Xem chi tiết
TC
Xem chi tiết
NL
1 tháng 11 2021 lúc 13:24

Xét \(I=\int\limits^1_0x^2f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=x^2dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}x^3.f\left(x\right)|^1_0-\dfrac{1}{3}\int\limits^1_0x^3.f'\left(x\right)dx=-\dfrac{1}{3}\int\limits^1_0x^3f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0x^3f'\left(x\right)dx=-1\)

Lại có: \(\int\limits^1_0x^6.dx=\dfrac{1}{7}\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+14\int\limits^1_0x^3.f'\left(x\right)dx+49.\int\limits^1_0x^6dx=0\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)+7x^3\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)+7x^3=0\)

\(\Rightarrow f'\left(x\right)=-7x^3\)

\(\Rightarrow f\left(x\right)=\int-7x^3dx=-\dfrac{7}{4}x^4+C\)

\(f\left(1\right)=0\Rightarrow C=\dfrac{7}{4}\)

\(\Rightarrow I=\int\limits^1_0\left(-\dfrac{7}{4}x^4+\dfrac{7}{4}\right)dx=...\)

Bình luận (0)
H24
Xem chi tiết
NL
29 tháng 3 2022 lúc 22:44

\(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2x.f^2\left(x\right)\)

\(\Rightarrow\dfrac{f\left(x\right)-\left(x+1\right)f'\left(x\right)}{f^2\left(x\right)}=2x\)

\(\Rightarrow\left[\dfrac{x+1}{f\left(x\right)}\right]'=2x\)

Lấy nguyên hàm 2 vế:

\(\dfrac{x+1}{f\left(x\right)}=\int2xdx=x^2+C\)

Thay \(x=1\Rightarrow\dfrac{2}{f\left(1\right)}=1+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=\dfrac{x+1}{x^2}\Rightarrow\int\limits^2_1\left(\dfrac{1}{x}+\dfrac{1}{x^2}\right)dx=\left(lnx-\dfrac{1}{x}\right)|^2_1=ln2+\dfrac{1}{2}\)

Bình luận (0)
NL
29 tháng 3 2022 lúc 23:06

C

Bình luận (0)
BC
29 tháng 3 2022 lúc 23:10

C

Bình luận (0)
1G
Xem chi tiết
NL
25 tháng 2 2021 lúc 18:31

2a. Đề sai, nhìn biểu thức \(\dfrac{f'\left(x\right)}{f'\left(x\right)}dx\) là thấy

2b. Đồ thị hàm số không cắt Ox trên \(\left(0;1\right)\) nên diện tích cần tìm:

\(S=\int\limits^1_0\left(x^4-5x^2+4\right)dx=\dfrac{38}{15}\)

3a. Phương trình (P) theo đoạn chắn:

\(\dfrac{x}{4}+\dfrac{y}{-1}+\dfrac{z}{-2}=1\)

3b. Câu này đề sai, đề cho mặt phẳng (Q) rồi thì sao lại còn viết pt mặt phẳng (Q) nữa?

Bình luận (1)
NL
25 tháng 2 2021 lúc 19:15

3b. \(\overrightarrow{n_{\left(Q\right)}}=\left(3;-1;-2\right)\)

Do (P) song song (Q) nên (P) cũng nhận \(\left(3;-1;-2\right)\) là 1 vtpt

Do đó pt (P) có dạng:

\(3\left(x-0\right)-1\left(y-0\right)-2\left(z-1\right)=0\)

\(\Leftrightarrow3x-y-2z+2=0\)

Bình luận (1)
WK
Xem chi tiết
NL
8 tháng 3 2023 lúc 21:11

Xét \(I=\int\limits^1_0x.f\left(3x\right)dx\)

Đặt \(3x=u\Rightarrow dx=\dfrac{1}{3}du\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=1\Rightarrow u=3\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{9}\int\limits^3_0u.f\left(u\right)du=\dfrac{1}{9}\int\limits^3_0x.f\left(x\right)dx=1\)

\(\Rightarrow J=\int\limits^3_0x.f\left(x\right)dx=9\)

Xét J, đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=x.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{x^2}{2}\end{matrix}\right.\)

\(\Rightarrow J=\dfrac{x^2}{2}.f\left(x\right)|^3_0-\dfrac{1}{2}\int\limits^3_0x^2.f'\left(x\right)dx=\dfrac{9}{2}-\dfrac{1}{2}\int\limits^3_0x^2.f'\left(x\right)dx\)

\(\Rightarrow\int\limits^3_0x^2.f'\left(x\right)dx=9-2J=-9\)

Bình luận (0)
TT
Xem chi tiết
HH
21 tháng 3 2021 lúc 22:22

Đang học Lý mà thấy bài nguyên hàm hay hay nên nhảy vô luôn :b

\(I_1=\int\limits^1_0xf\left(x\right)dx\)

\(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow\int xf\left(x\right)dx=\dfrac{1}{2}x^2f\left(x\right)-\dfrac{1}{2}\int x^2f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0xf\left(x\right)dx=\dfrac{1}{2}x^2|^1_0-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{1}{2}\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{3}{10}\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\)

Đoạn này hơi rối xíu, ông để ý kỹ nhé, nhận thấy ta có 2 dữ kiện đã biết, là: \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}and\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\) có gì đó liên quan đến hằng đẳng thức, nên ta sẽ sử dụng luôn

\(\int\limits^1_0\left[f'\left(x\right)+tx^2\right]^2dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+2t\int\limits^1_0x^2f'\left(x\right)dx+t^2\int\limits^1_0x^4dx=0\)

\(\Leftrightarrow\dfrac{9}{5}+\dfrac{6}{5}t+\dfrac{1}{5}t^2=0\)  \(\left(\int\limits^1_0x^4dx=\dfrac{1}{5}x^5|^1_0=\dfrac{1}{5}\right)\)\(\)\(\Leftrightarrow t=-3\Rightarrow\int\limits^1_0\left[f'\left(x\right)-3x^2\right]^2dx=0\)

\(\Leftrightarrow f'\left(x\right)=3x^2\Leftrightarrow f\left(x\right)=x^3+C\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0x^3dx=\dfrac{1}{4}x^4|^1_0=\dfrac{1}{4}\)

P/s: Có gì ko hiểu hỏi mình nhé !

Bình luận (11)
PO
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:13

Chọn B

Bình luận (0)