Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

TC

Cho hàm số f(x) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mãn \(f\left(1\right)=0\) ; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=7\) và \(\int\limits^1_0x^2f\left(x\right)dx=\dfrac{1}{3}\) . Tính \(I=\int\limits^1_0f\left(x\right)dx\) .

NL
1 tháng 11 2021 lúc 13:24

Xét \(I=\int\limits^1_0x^2f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=x^2dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}x^3.f\left(x\right)|^1_0-\dfrac{1}{3}\int\limits^1_0x^3.f'\left(x\right)dx=-\dfrac{1}{3}\int\limits^1_0x^3f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0x^3f'\left(x\right)dx=-1\)

Lại có: \(\int\limits^1_0x^6.dx=\dfrac{1}{7}\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+14\int\limits^1_0x^3.f'\left(x\right)dx+49.\int\limits^1_0x^6dx=0\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)+7x^3\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)+7x^3=0\)

\(\Rightarrow f'\left(x\right)=-7x^3\)

\(\Rightarrow f\left(x\right)=\int-7x^3dx=-\dfrac{7}{4}x^4+C\)

\(f\left(1\right)=0\Rightarrow C=\dfrac{7}{4}\)

\(\Rightarrow I=\int\limits^1_0\left(-\dfrac{7}{4}x^4+\dfrac{7}{4}\right)dx=...\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
NB
Xem chi tiết
DQ
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
DQ
Xem chi tiết
TA
Xem chi tiết