(x3+2x2-2x-1):(x2+3x+1)
(x3+2x2-2x-1):(x2+3x+1)
\(=\dfrac{x^3+3x^2+x-x^2-3x-1}{x^2+3x+1}=x-1\)
Làm tính chia (35x⁴y³–14x³y²+21x²y⁴) : 7xy²
Làm tính chia:
a) 20x⁴y³ : 4x²y³
b) (-16x²y³z) : 8xy³
c) (4y³b²)³ : (2a²b)²
d) (3a²b–4ab²) : 5ab
e) (35x⁴y³–14x³y²+21x²y⁴) : 7xy²
a: =5x^2
b: =-2xz
c: \(=\dfrac{64y^9b^6}{4a^4b^2}=\dfrac{16y^9b^4}{a^4}\)
d: \(=\dfrac{3}{5}a-\dfrac{4}{5}b\)
tìm n thuộc n sao cho -7x^n+1y^6 chia hết cho 4x^5 y^n
Để -7x^n+1y^6 chia hết cho 4x^5y^n thì
n+1>=5 và 6>=n
=>4<=n<=6
=>\(n\in\left\{4;5;6\right\}\)
(x^4-x^3y+x^2y^2+xy^3):(x^2+y^2)
Sửa đề: x^4+x^3y+x^2y^2+xy^3 chia cho x^2+y^2
\(=\dfrac{x^2\left(x^2+y^2\right)+xy\left(x^2+y^2\right)}{x^2+y^2}=x^2+xy\)
d) 2(x² + 1)³ : 1/3(x² + 1)
= (2 : 1/3) . [(x² + 1)³ : (x²+ 1)]
= 6(x² + 1)²
e) 5(x - y)⁵ : 5/6(x - y)²
= (5 : 5/6) . [(x - y)⁵ : (x - y)²]
= 6(x - y)³
Bài 1:
a) (-2)⁵ : (-2)³ = (-2)² = 4
b) (-y)⁷ : (-y)³ = (-y)⁴ = y⁴
c) x¹² : (-x)¹⁰ = x¹² : x¹⁰ = x²
d) (2x)⁶ : (2x)³ = (2x)³ = 8x³
e) (-3x)⁵ : (-3x)² = (-3x)³ = -27x³
f) (xy²)⁴ : (xy²)² = (xy²)² = x²y⁴
a: \(=\left(x+2\right)^3\)
c: \(=\left(x^2+2x+4\right)^4\)
d: \(=\left(2\cdot3\right)\cdot\left[\dfrac{\left(x^2+1\right)^3}{x^2+1}\right]=6\left(x^2+1\right)^2\)
e: \(=6\left(x-y\right)^3\)
Tìm a và b .\(\)
a) 3x3 +4x2 + 3x + a ⋮ x+3
b) x4 + ax3 +b ⋮ x2-1
a: \(\Leftrightarrow3x^3+9x^2-5x^2-15x+18x+54+a-54⋮x+3\)
=>a-54=0
=>a=54
b: \(\Leftrightarrow x^4-x^2+ax^3-ax+x^2-1+ax+b+1⋮x^2-1\)
=>a=0 và b=-1
\(\left[-\left(x^2+y^2\right)^4-4\left(x^2+y^2\right)^3-5\left(x^2+y^2\right)^2\right]:\left(x^2+y^2\right)^2\\ =\left[-\left(x^2+y^2\right)^4:\left(x^2+y^2\right)^2\right]+\left[-4\left(x^2+y^2\right)^3:\left(x^2+y^2\right)^2\right]+\left[-5\left(x^2+y^2\right)^2:\left(x^2+y^2\right)^2\right]\\ =-\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)-5\left(x^2+y^2\right)\left(ĐPCM\right)\)