Những câu hỏi liên quan
NK
Xem chi tiết
KL
17 tháng 12 2023 lúc 14:43

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

Bình luận (1)
NT
17 tháng 12 2023 lúc 14:47

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

Bình luận (1)
KL
17 tháng 12 2023 lúc 14:55

Bài 2

a) x²(x - 2023) - 2023 + x = 0

x²(x - 2023) - (x - 2023) = 0

(x - 2023)(x² - 1) = 0

x - 2023 = 0 hoặc x² - 1 = 0

*) x - 2023 = 0

x = 2023

*) x² - 1 = 0

x² = 1

x = 1 hoặc x = -1

Vậy x = -1; x = 1; x = 2023

b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0

-x² + 4x + 2x² - 4x - 9 = 0

x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

c) x² + 2x - 3x - 6 = 0

(x² + 2x) - (3x + 6) = 0

x(x + 2) - 3(x + 2) = 0

(x + 2)(x - 3) = 0

x + 2 = 0 hoặc x - 3 = 0

*) x + 2 = 0

x = -2

*) x - 3 = 0

x = 3

Vậy x = -2; x = 3

d) 3x(x - 10) - 2x + 20 = 0

3x(x - 10) - (2x - 20) = 0

3x(x - 10) - 2(x - 10) = 0

(x - 10)(3x - 2) = 0

x - 10 = 0 hoặc 3x - 2 = 0

*) x - 10 = 0

x = 10

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = 2/3; x = 10

Bình luận (1)
TL
Xem chi tiết
NT
23 tháng 10 2021 lúc 23:42

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
NM
9 tháng 10 2021 lúc 10:07

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LL
25 tháng 10 2021 lúc 20:37

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

Bình luận (0)
NM
Xem chi tiết
H9
20 tháng 8 2023 lúc 10:23

a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)

\(\Leftrightarrow12x+8=0\)

\(\Leftrightarrow12x=-8\)

\(\Leftrightarrow x=-\dfrac{8}{12}\)

\(\Leftrightarrow x=-\dfrac{2}{3}\)

b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)

\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)

\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)

\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)

\(\Leftrightarrow89x+27=0\)

\(\Leftrightarrow x=-\dfrac{27}{89}\)

c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)

\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)

\(\Leftrightarrow12x+16=0\)

\(\Leftrightarrow x=-\dfrac{16}{12}\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

Bình luận (2)
KR
20 tháng 8 2023 lúc 10:27

`#040911`

`a)`

`(x + 2)^3 - x^2(x + 6) = 0`

`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`

`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`

`<=> 12x = 0`

`<=> x = 0`

Vậy, `x = 0.`

`b)`

`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`

`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`

`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`

`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`

`<=> 89x + 27 = 0`

`<=> 89x = -27`

`<=> x = -27/89`

Vậy, `x = -27/89`

`c)`

`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`

`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`

`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`

`<=> -12x + 16 = 0`

`<=> -12x = -16`

`<=> 12x = 16`

`<=> x=4/3`

Vậy, `x = 4/3.`

Bình luận (0)
RN
Xem chi tiết
TH
12 tháng 5 2022 lúc 16:02

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 10 2023 lúc 21:38

a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)

=>\(\left|2x+1\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

c: (2x-3)2=36

=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

d: \(7^{x+2}+2\cdot7^x=357\)

=>\(7^x\cdot49+7^x\cdot2=357\)

=>\(7^x=7\)

=>x=1

Bình luận (0)
H24
28 tháng 10 2023 lúc 21:45

a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

\(---\)

b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)

\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)

\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

\(---\)

c) \(\left(2x-3\right)^2=36\)

\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(---\)

d) \(7^{x+2}+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)

\(\Rightarrow7^x\cdot\left(49+2\right)=357\)

\(\Rightarrow7^x\cdot51=357\)

\(\Rightarrow7^x=357:51\)

\(\Rightarrow7^x=7\)

\(\Rightarrow x=1\)

Bình luận (0)
H24
Xem chi tiết
LL
2 tháng 11 2021 lúc 12:33

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
NM
10 tháng 11 2021 lúc 20:44

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Bình luận (0)
KH
Xem chi tiết