Những câu hỏi liên quan
SM
Xem chi tiết
H24
Xem chi tiết
PD
16 tháng 11 2018 lúc 21:14

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

Bình luận (0)
PD
16 tháng 11 2018 lúc 21:18

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

Bình luận (0)
PS
Xem chi tiết
DQ
14 tháng 10 2020 lúc 4:59

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
DQ
14 tháng 10 2020 lúc 5:06

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

Bình luận (0)
 Khách vãng lai đã xóa
DQ
14 tháng 10 2020 lúc 5:15

3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)

Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)

b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.

Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)

\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)

\(a^5\equiv a\left(mod5\right)\)

Theo tính chất của phép đồng dư, ta có:

\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)

\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)

\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)

Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H9
1 tháng 10 2023 lúc 7:57

a) \(C=5+5^2+5^3+...+5^8\)

\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)

\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)

\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)

Vậy C chia hết cho 30

b) \(D=2+2^2+2^3+...+2^{60}\)

\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)

\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)

Vậy D chia hết cho 3

\(D=2+2^2+2^3+...+2^{60}\)

\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy D chia hết cho 7

\(D=2+2^2+2^3+...+2^{60}\)

\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)

\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)

\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)

Vậy D chia hết cho 15 

Bình luận (0)
KL
1 tháng 10 2023 lúc 8:10

a) C = 5 + 5² + 5³ + ... + 5⁸

= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)

= 30 + 5².30 + 5⁴.30 + 5⁶.30

= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30

Vậy C ⋮ 30

b) *) Chứng minh D ⋮ 3

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy D ⋮ 3   (1)

*) Chứng minh D ⋮ 7

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy D ⋮ 7   (2)

*) Chứng minh D ⋮ 15

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)

= 2.15 + 2⁵.15 + ... + 2⁵⁷.15

= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15

Vậy D ⋮ 15   (3)

Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15

Bình luận (0)
ND
Xem chi tiết
TT
Xem chi tiết
BY
Xem chi tiết
HT
8 tháng 4 2021 lúc 15:31

A = 2 + 22 + 23 + ...+ 230

A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )

A = 2(1+2) + 23(1+2) + ....+ 229(1+2)

A = 2.3 + 23 . 3 + ...+ 229.3

A = 3(2+23 + ...+ 229\(⋮\) 3

Vậy  A chia hết cho 3 

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
NT
25 tháng 10 2023 lúc 20:19

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)

\(=30+5^2\left(5+5^2\right)+...+5^{78}\left(5+5^2\right)\)

\(=30\left(1+5^2+...+5^{78}\right)⋮30\)

Bình luận (0)
NA
Xem chi tiết
DT
5 tháng 1 2019 lúc 21:59

 A có tận cùng là 5 nên ko chia hết cho 30

Bình luận (0)
H24
5 tháng 1 2019 lúc 22:03

Để A chia hết cho 30 => A chia hết cho 5,6

A = 5 + 52 +....+ 595

A = 5.(5 + 1) +...+ 595

A = 6. ( 5 + 53 +...+ 593) + 595 không chia hết cho 6.

Vậy A không chia hết cho 30.

Chúc em học tốt!!!

Bình luận (0)