Violympic toán 6

H24

1.Chứng minh rằng:

A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4

2. Chứng minh rằng:

C= 5+5^2+5^3+...+5^8 chia hết cho 30.

PD
16 tháng 11 2018 lúc 21:14

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

Bình luận (0)
PD
16 tháng 11 2018 lúc 21:18

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
HN
Xem chi tiết
BP
Xem chi tiết
HL
Xem chi tiết
HA
Xem chi tiết
HK
Xem chi tiết
GM
Xem chi tiết