Những câu hỏi liên quan
TC
Xem chi tiết
NT
24 tháng 7 2021 lúc 13:28

A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5 

= ( y - 2 )^2 + 5 >= 5 

Dấu ''='' xảy ra khi y = 2 

Vậy GTNN A là 5 khi y = 2

B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTNN B là 3/4 khi x = 1/2 

C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 ) 

= 2 ( x - 3/2 )^2 - 9/2 >= -9/2 

Dấu ''='' xảy ra khi x = 3/2 

Vậy GTNN C là -9/2 khi x = 3/2 

Bình luận (1)
NT
25 tháng 7 2021 lúc 0:34

a) Ta có: \(A=y^2-4y+9\)

\(=y^2-4y+4+5\)

\(=\left(y-2\right)^2+5\ge5\forall y\)

Dấu '=' xảy ra khi y=2

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
HC
Xem chi tiết
BL
5 tháng 3 2019 lúc 21:33

bn lên mạng nhé!

k mk nhé!

thanks!

#conmiu#

Bình luận (0)
BK
Xem chi tiết
NL
21 tháng 7 2021 lúc 18:09

\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)

\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)

\(\Rightarrow x^2+y^2\le8\)

\(C_{max}=8\) khi \(x=y=\pm2\)

\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)

\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)

Bình luận (1)
BT
21 tháng 7 2021 lúc 14:09

undefinedĐúng thì like giúp mik nha bạn. Thx bạn

Bình luận (0)
ND
Xem chi tiết
KR
7 tháng 10 2023 lúc 18:57

`#3107.101107`

a)

`x^2 + 6x + 10`

`= (x^2 + 2*x*3 + 3^2) + 1`

`= (x + 3)^2 + 1`

Vì `(x + 3)^2 \ge 0` `AA` `x`

`=> (x + 3)^2 + 1 \ge 1` `AA` `x`

Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`

`<=> x + 3 = 0`

`<=> x = -3`

b)

`4x^2 - 4x + 5`

`= [(2x)^2 - 2*2x*1 + 1^2] + 4`

`= (2x - 1)^2 + 4`

Vì `(2x - 1)^2 \ge 0` `AA` `x`

`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`

Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`

`<=> 2x - 1 = 0`

`<=> 2x = 1`

`<=> x = 1/2`

c)

`x^2 - 3x + 1`

`= (x^2 - 2*x*3/2 + 9/4) - 5/4`

`= (x - 3/2)^2 - 5/4`

Vì `(x - 3/2)^2 \ge 0` `AA` `x`

`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`

Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`

`<=> x - 3/2 = 0`

`<=> x = 3/2`

Bình luận (0)
TT
Xem chi tiết
TV
Xem chi tiết
NL
23 tháng 12 2020 lúc 23:30

\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)

\(\Rightarrow-4\le x+y\le-2\)

\(\Rightarrow2016\le B\le2018\)

\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)

\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)

Bình luận (0)
H24
Xem chi tiết
NL
27 tháng 7 2021 lúc 23:12

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow M\le9\)

\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow M\ge1\)

\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)

Bình luận (0)
NP
Xem chi tiết
H24
27 tháng 6 2021 lúc 7:59

Không có max

`a)sqrt{x^2-2x+5}`

`=sqrt{x^2-2x+1+4}`

`=sqrt{(x-1)^2+4}`

Vì `(x-1)^2>=0`

`=>(x-1)^2+4>=4`

`=>sqrt{(x-1)^2+4}>=sqrt4=2`

Dấu "=" xảy ra khi `x=1.`

`b)2+sqrt{x^2-4x+5}`

`=2+sqrt{x^2-4x+4+1}`

`=2+sqrt{(x-2)^2+1}`

Vì `(x-2)^2>=0`

`=>(x-2)^2+1>=1`

`=>sqrt{(x-2)^2+1}>=1`

`=>sqrt{(x-2)^2+1}+2>=3`

Dấu "=" xảy ra khi `x=2`

Bình luận (2)
BK
Xem chi tiết
BT
21 tháng 7 2021 lúc 14:05

đúng thì like giúp mik nha bạn. Thx bạnundefined

Bình luận (5)
H24
Xem chi tiết