Những câu hỏi liên quan
MT
Xem chi tiết
NK
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
AH
31 tháng 10 2018 lúc 21:12

Lời giải:

\((3a+2b)(3a+2c)=16bc\)

\(\Leftrightarrow 9a^2+6a(b+c)=12bc\)

Theo BĐT Cô-si \(4bc\leq (b+c)^2\Rightarrow 9a^2+6a(b+c)\leq 3(b+c)^2\)

\(\Rightarrow 3a^2+2a(b+c)\leq (b+c)^2\)

\(\Leftrightarrow (b+c)^2-3a^2-2a(b+c)\geq 0\)

\(\Leftrightarrow (b+c)^2-9a^2-2a(b+c)+6a^2\geq 0\)

\(\Leftrightarrow (b+c-3a)(b+c+3a)-2a(b+c-3a)\geq 0\)

\(\Leftrightarrow (b+c-3a)(b+c+a)\geq 0\)

Vì $a+b+c>0$ nên \(b+c-3a\geq 0\Rightarrow b+c\geq 3a\) (đpcm)

b) Áp dụng BĐT Cô-si và kết quả phần a:

\(\frac{a}{b+c}+\frac{b+c}{a}=\frac{a}{b+c}+\frac{b+c}{9a}+\frac{8(b+c)}{9a}\)

\(\geq 2\sqrt{\frac{a}{b+c}.\frac{b+c}{9a}}+\frac{8(b+c)}{9a}=\frac{2}{3}+\frac{8(b+c)}{9a}\geq \frac{2}{3}+\frac{8.3a}{9a}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Ta có đpcm.

Bình luận (0)
GC
Xem chi tiết
MY
11 tháng 8 2021 lúc 12:49

\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)

\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)

Bình luận (0)
VT
Xem chi tiết
TT
30 tháng 10 2021 lúc 21:08

\(=\dfrac{11a+17b}{11c-17d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow...\)

Bình luận (8)
OY
30 tháng 10 2021 lúc 21:44

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

\(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11bk+17b}{3bk-4b}=\dfrac{b\left(11k+17\right)}{b\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(1\right)\)

\(\Rightarrow\dfrac{11c+17d}{3c-4d}=\dfrac{11dk+17d}{3dk-4d}=\dfrac{d\left(11k+17\right)}{d\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)

Bình luận (2)
NP
Xem chi tiết
NP
28 tháng 5 2017 lúc 23:13

cần 1 lời giải đáp cụ thể

Bình luận (0)
H24
28 tháng 5 2017 lúc 23:39

trên face có đấy,lên đó mà tìm

Bình luận (2)
TK
Xem chi tiết
SG
6 tháng 4 2017 lúc 21:21

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\ge\dfrac{9}{2}\left(đpcm\right)\)

Bình luận (1)
TP
Xem chi tiết
DT
15 tháng 12 2017 lúc 22:08

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

Bình luận (0)
LB
18 tháng 12 2017 lúc 9:30

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)

Bình luận (0)