§1. Bất đẳng thức

TP

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\) . Chứng minh bất đẳng thức với ∀a,b,c ≥0

Mọi người giúp em với ạ .

DT
15 tháng 12 2017 lúc 22:08

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

Bình luận (0)
LB
18 tháng 12 2017 lúc 9:30

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
PO
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
L3
Xem chi tiết