Tìm m để tam thức bậc hai f(x) = -x2 - 2x + m - 12 không dương với mọi x\(\in\)R
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):
\({x^2} + (m + 1)x + 2m + 3\)
Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)
Ta có: a = 1 >0 nên \(\Delta < 0\)
\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)
Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} = 3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)
Khi đó
\( 3+\sqrt{20} < m < 3-\sqrt{20}\)
Vậy \( 3+\sqrt{20} < m < 3-\sqrt{20}\)
Cho tam thức bậc hai f(x)=x2-(m+2)x+2m+1
Tìm m để bất phương trình f(x)>0 đúng với mọi \(x\in R\)
f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)
Bất phương trình có a=1>0
=>Bất phương trình đúng với mọi x thuộc tập số thực
<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)
\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)
\(\Leftrightarrow m^2-12m< 0\)
\(\Leftrightarrow0< m< 12\)
Cho tam thức bậc 2:f(x)=x2-(m+2)x+8m+1(m à tham số).Có bao nhiêu giá trị nguyên của tham số m trên [-2022;2022] để f(x) luôn không âm với mọi x
cho tam thức bậc hai f (x) = 3x^2 -6(2m + 1)x +12m +5 tìm m để f (x) > 0 với mọi x thuộc R
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
Tìm các giá trị của tham số m để các tam thức bậc hai sau có dấu không đổi (không phụ thuộc vào x).
f ( x ) = ( m 2 + m + 1 ) x 2 - ( 2 m - 1 ) x + 1
Không có giá trị nào của m thỏa mãn điều kiện này.
Cho hàm số y=f(x) có đạo hàm f’(x)=(x-1)2(x2-2x) với mọi x ∈ R . Có bao nhiêu giá trị nguyên dương của tham số m để hàm y=f(x2-8x+m) có 5 điểm cực trị
A. 15
B. 17
C. 18
D. 16
Cho tam thức bậc hai f(x)=x2-(m+2)x+2m+1
a Tìm m để bất phương trình f(x)>0 đúng với mọi x∈R
b Tìm m để bất phương trình f(x)≤0 có tập nghiệm là 1 đoạn trên trục số có độ dài bằng √3
c Tìm m để bất phương trình f(x) < 0 đúng với mọi x thuộc khoảng (0;2)
Định m để các tam thức sau thỏa điều kiện chỉ ra:
a. f(x) = 4x2 - (m+2)x + 2m - 3 : dương với mọi x \(\in\) R
b. f(x) = (m + 1)x2 + 2(2m - 1)x-m-1 : âm với mọi x \(\in\) R
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2.
a)
Để hàm \(f(x)=4x^2-(m+2)x+2m-3>0\forall x\in\mathbb{R}\)
\(\Leftrightarrow \Delta=(m+2)^2-16(2m-3)<0\)
\(\Leftrightarrow m^2-28m+52=(m-2)(m-26)<0\)
\(\Leftrightarrow 2< m<26\)
b)
Nếu \(m=-1\rightarrow f(x)=-6x\) không thể âm với mọi $x$
Nếu \(m\neq -1\):
Để \(f(x)=(m+1)x^2+2(2m-1)x-m-1<0\forall x\in\mathbb{R}\) thì cần hai đk sau:
1. \(m+1<0\leftrightarrow m<-1\)
2. \(\Delta'=(2m-1)^2+(m+1)^2<0\) (hiển nhiên vô lý)
Vậy không tồn tại $m$ thỏa mãn.
Cho f(x) = x2 -2(m+5)x +10m +24. Tìm m để f(x) dương với mọi x > 2. ae mk đâu hết r nhanh giúp mk vs
\(\Delta'=\left(m+5\right)^2-10m-24=m^2+1>0;\forall m\)
\(\Rightarrow f\left(x\right)=0\) luôn có 2 nghiệm pb với mọi m và: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+5\right)\\x_1x_2=10m+24\end{matrix}\right.\)
Để \(f\left(x\right)>0;\forall x>2\)
\(\Leftrightarrow x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10m+24-4\left(m+5\right)+4>0\\2\left(m+5\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{3}\\m< -3\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn