Những câu hỏi liên quan
TT
Xem chi tiết
NT
19 tháng 7 2021 lúc 20:44

Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC^2=BC^2-AB^2=400-144=256\Rightarrow AC=16\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\)cm

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=7,2\)cm 

=> CH = BC - BH = 20 - 7,2 = 12,8 cm 

 

Bình luận (0)
H24
19 tháng 7 2021 lúc 20:46

BH=HC=10cm
Vì BC : 2 = 10
Vì là tam giác cân nên AB=AC=12cm
Đường cao AH tự tính nha tui tính ra 2căn11 

Bình luận (0)
DN
Xem chi tiết
AH
22 tháng 5 2021 lúc 23:24

Lời giải:

1) Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$

$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)

$CH=BC-BH=8-4,5=3,5$ (cm)

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)

2. 3. Những phần này bạn làm tương tự như phần 1.

 

 

Bình luận (0)
AH
22 tháng 5 2021 lúc 23:25

Hình vẽ:

Bình luận (0)
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)
KT
Xem chi tiết
PT
7 tháng 7 2015 lúc 9:24

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

Bình luận (0)
KN
7 tháng 7 2015 lúc 9:32

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)

Bình luận (0)
H24
Xem chi tiết
TP
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Bình luận (0)
CC
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Bình luận (0)
KT
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Bình luận (0)
HG
Xem chi tiết
H24
4 tháng 3 2022 lúc 21:35

tham khảo

a,AC=√BC2−AB2=16(cm)(pytago)

Áp dụng HTL: 

Bình luận (1)
DD
Xem chi tiết
NM
1 tháng 12 2021 lúc 10:02

Câu 4:

\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)

Bình luận (0)
NN
Xem chi tiết
IP
24 tháng 3 2021 lúc 20:04

Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :

\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)

Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)

Bình luận (0)
TT
Xem chi tiết
NM
4 tháng 10 2021 lúc 7:03

Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
H24
4 tháng 10 2021 lúc 7:09

undefined

Bình luận (0)