Những câu hỏi liên quan
HN
Xem chi tiết
TT
20 tháng 12 2019 lúc 12:39

Đề đánh bị lỗi.

Áp dụng bất đẳng thức Bunhiacopski:

\(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{\left[\sqrt{c}^2+\sqrt{\left(a-c\right)}^2\right]\left[\sqrt{c}^2+\sqrt{\left(b-c\right)}^2\right]}\)

\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
PH
12 tháng 9 2017 lúc 21:39

ý a ko cần giải đâu nha mk ra òi

Bình luận (0)
TH
17 tháng 7 2019 lúc 22:24

Dễ thôi

Bình luận (0)
TH
17 tháng 7 2019 lúc 22:25

Dùng mẹo nhé bạn

Bình luận (0)
TV
Xem chi tiết
AH
8 tháng 3 2021 lúc 21:46

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

Bình luận (0)
AH
8 tháng 3 2021 lúc 21:49

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
AH
8 tháng 3 2021 lúc 21:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
NH
Xem chi tiết
EC
Xem chi tiết
KB
19 tháng 3 2019 lúc 20:24

Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :

\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)

\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)

\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)

\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)

\(a;b\ge c\Rightarrow a=b=2c\)

Vậy ...

Bình luận (0)
NL
19 tháng 3 2019 lúc 12:50

BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng BĐT Cauchy:

\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=2c\)

Bình luận (0)
KN
Xem chi tiết
PP
4 tháng 2 2021 lúc 18:57

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Bình luận (0)
 Khách vãng lai đã xóa
NT
4 tháng 2 2021 lúc 19:09

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
BL
1 tháng 8 2019 lúc 9:47

+ Theo BĐT Bunhiacopxki :

\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)

\(=ab\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Dấu "=" \(\Leftrightarrow\frac{c}{a-c}=\frac{b-c}{c}=\frac{c+b-c}{a-c+c}=\frac{b}{a}\)

\(\Leftrightarrow ab=c\left(a+b\right)\)

Bình luận (0)
DT
Xem chi tiết
TN
Xem chi tiết