+ Theo BĐT Bunhiacopxki :
\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(=ab\)
\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Dấu "=" \(\Leftrightarrow\frac{c}{a-c}=\frac{b-c}{c}=\frac{c+b-c}{a-c+c}=\frac{b}{a}\)
\(\Leftrightarrow ab=c\left(a+b\right)\)