Cho góc \(\alpha \;\;({0^o} < \alpha < {180^o})\) thỏa mãn \(\tan \alpha = 3\)
Tính giá trị biểu thức: \(P = \frac{{2\sin \alpha - 3\cos \alpha }}{{3\sin \alpha + 2\cos \alpha }}\)
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Cho góc nhọn alpha và sin alpha+cos alpha =1 tính giá trị của alpha
Lời giải:
$\sin a+\cos a=1$
$\sin ^2a+\cos ^2a=1$
$\Rightarrow 2\sin a\cos a=(\sin a+\cos a)^2-(\sin ^2a+\cos ^2a)=1^2-1=0$
$\Rightarrow \sin a\cos a=0$
$\Rightarrow \sin a=0$ hoặc $\cos a=0$
Nếu $\sin a=0$ hoặc $\cos a=0$
Mà vì $a$ là góc nhọn nên $\sin a, \cos a< 1$ nên không tìm được góc $a$ thỏa mãn.
Cho alpha là góc nhọn. Tính giá trị bthuc: M= cot alpha + tan alpha/cot alpha - tan alpha. Biết sin alpha = 3/5
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
Cho góc lượng giác \(\alpha \)sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm \(\cos \alpha \)
Vì \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\) nên \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( { - \frac{4}{5}} \right)^2} = \frac{9}{{25}}\)
Do \(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0\). Suy ra \(\cos \alpha = - \frac{3}{5}\)
Cho \(\sin\alpha=\sqrt{3}\cos\alpha\). Tính số đo của góc \(\alpha\)
\(sina=\sqrt{3}cosa\)
\(\Rightarrow\dfrac{sina}{cosa}=\sqrt{3}\)
\(\Rightarrow tana=\sqrt{3}\)
\(\Rightarrow a=60^0\) (nếu góc nhọn)
cho góc alpha = 3/5 với 3π/2 < alpha < 2π . Tính Sin alpha , Tan alpha , Cot alpha mn giúp mình với ạ❤️
Sửa đề: cosa=3/5
3pi/2<a<2pi
=>sin a<0
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà sin a<0
nên sina =-4/5
tan a=-4/5:3/5=-4/3
cot a=1:(-4/3)=-3/4
Cho góc \(\alpha\) thỏa mãn \(sin\alpha=\dfrac{4}{5}\) . Tính \(P=cos4\alpha\)
Áp dụng Công thức nhân đôi ta có
`cos 2 alpha =1-2sin^2 alpha`
`= 1 - 2 * (4/5)^2 = -7/25`
`=> P =cos 4 alpha = cos 2.2 alpha= 2 cos^2 2 alpha-1`
`=2* (-7/25)^2 -1 = -527/625`
cho đoạn thẳng AB . Trên cùng 1 phía đối với đoạn thẳng AB vẽ tia Ax và By sao cho góc ABy = alpha : góc xAB = 7/2 alpha . Tìm alpha để Ax//By
Ax//By
=>góc yBA+góc xAB=180 độ(hai góc trong cùng phía)
=>\(a+\dfrac{7}{2}a=180\)
=>9/2a=180
=>a=40
Cho góc bất kì \(\alpha \). Chứng minh các đẳng thức sau:
a) \({\left( {\sin \alpha + \cos \alpha } \right)^2} = 1 + \sin 2\alpha ;\;\)
b) \({\cos ^4}\alpha - {\sin ^4}\alpha = \cos 2\alpha .\)
a) Ta có: \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha = 1 + \sin 2\alpha \;\)
b) \({\cos ^4}\alpha - {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)