giải pt: sin5x- cos 6x=0
. cos7x+sin8x=0
Giải PT
a1) \(\dfrac{\left(1-2\sin x\right)\cos x}{\left(1+2\sin x\right)\left(1-\sin x\right)}=\sqrt{3}\)
a2) \(2\sin17x+\sqrt{3}\cos5x+\sin5x=0\)
a3) \(\)\(\cos7x-\sin5x=\sqrt{3}\left(\cos5x-\sin7x\right)\)
a4) \(\sqrt{3}\cos5x-2\sin3x\cos2x-\sin x=0\)
a5) \(\tan x+\cot x=2\left(\sin2x+\cos2x\right)\)
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
i) sin5x + sin8x + sin3x= 0 j) 4cos3x+ \(3\sqrt{2}\).sin2x = 8cosx
a.
\(sin5x+sin3x+sin8x=0\)
\(\Leftrightarrow2sin4x.cosx+2sin4x.cos4x=0\)
\(\Leftrightarrow2sin4x\left(cosx+cos4x\right)=0\)
\(\Leftrightarrow4sin4x.cos\dfrac{5x}{2}cos\dfrac{3x}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos\dfrac{5x}{2}=0\\cos\dfrac{3x}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{4}\\x=\dfrac{\pi}{5}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
b.
\(\Leftrightarrow4cos^3x+6\sqrt{2}sinx.cosx=8cosx\)
\(\Leftrightarrow2cosx\left(2cos^2x+3\sqrt{2}sinx-4\right)=0\)
\(\Leftrightarrow cosx\left(-2sin^2x+3\sqrt{3}sinx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\sqrt{2}\left(loại\right)\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
Giải các phương trình sau :
a) \(2\cos x-\sin x=2\)
b) \(\sin5x+\cos5x=-1\)
c) \(8\cos^4x-4\cos2x+\sin4x-4=0\)
d) \(\sin^6x+\cos^6x+\dfrac{1}{2}\sin4x=0\)
Giải các Pt sau:
cos5s - sin2x =0
sin5x + cos2x =1
cos2x + \(2\sqrt{3}sinxcosx\) - sin2x = \(\sqrt{2}\)
giải phương trình
1.\(2sin15x+\sqrt{3}cos5x+sin5x=0\)
2.\(\left(cos2x-\sqrt{3}sin2x\right)-\sqrt{3}sinx-cosx+4=0\)
3.\(cos7x-sin5x=\sqrt{3}\left(cos5x-sin7x\right)\)
4.\(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
1.
\(\Leftrightarrow sin5x+\sqrt{3}cos5x=-2sin15x\)
\(\Leftrightarrow\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x=-sin15x\)
\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(-15x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=-15x+k2\pi\\5x+\frac{\pi}{3}=\pi+15x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{60}+\frac{k\pi}{10}\\x=-\frac{\pi}{15}+\frac{k\pi}{5}\end{matrix}\right.\)
2.
\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=2\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) với mọi x
\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
Giải các phương trình
a) \(\dfrac{\cos2x}{\sin2x-1}=0\)
b) \(\cos\left(\sin x\right)=1\)
c) \(2\sin^2x-1+\cos3x=0\)
d) \(tan3x.tanx=1\)
e) \(\cos3x=-\cos7x\)
a: ĐKXĐ: sin 2x<>1
=>2x<>pi/2+k2pi
=>x<>pi/4+kpi
\(\dfrac{cos2x}{sin2x-1}=0\)
=>cos2x=0
=>2x=pi/2+kpi
=>x=pi/4+kpi/2
Kết hợp ĐKXĐ, ta được:
x=3/4pi+k2pi hoặc x=7/4pi+k2pi
b: cos(sinx)=1
=>sin x=kpi
=>sin x=0
=>x=kpi
c: \(2\cdot sin^2x-1+cos3x=0\)
=>cos3x+cos2x=0
=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)
=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)
=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi
=>x=-pi+k2pi hoặc x=pi/5+k2pi/5
e: cos3x=-cos7x
=>cos3x=cos(pi-7x)
=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi
=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2
Giải PT:
\(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}+\dfrac{1}{sin8x}=0\) trên khoảng \(\left(0;\dfrac{3\pi}{2}\right)\)
mình trình bày chút, giờ mình ms onl
Cộng cả 2 vế với cot8x
\(\dfrac{1}{sin8x}+cot8x=\dfrac{1+cos8x}{sin8x}=\dfrac{2cos^24x}{2sin4x.cos4x}=cot4x\)
Rồi cot4x lại đi với \(\dfrac{1}{sin4x}\) tạo cot2x ư
........... cứ như thế phương trình sẽ trở thành
\(cot\dfrac{x}{2}=cot8x\)
Giải pt:
\(sin5x-cos3x=0\)
\(\Leftrightarrow sin5x=cos3x\)
\(\Leftrightarrow sin5x=sin\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{2}-3x+k2\pi\\5x=3x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)